python實現(xiàn)樸素貝葉斯算法
更新時間:2018年11月19日 16:43:46 作者:永恒的秋天
這篇文章主要為大家詳細(xì)介紹了Python實現(xiàn)樸素貝葉斯算法,具有一定的參考價值,感興趣的小伙伴們可以參考一下
本代碼實現(xiàn)了樸素貝葉斯分類器(假設(shè)了條件獨立的版本),常用于垃圾郵件分類,進(jìn)行了拉普拉斯平滑。
關(guān)于樸素貝葉斯算法原理可以參考博客中原理部分的博文。
#!/usr/bin/python
# -*- coding: utf-8 -*-
from math import log
from numpy import*
import operator
import matplotlib
import matplotlib.pyplot as plt
from os import listdir
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1]
return postingList,classVec
def createVocabList(dataSet):
vocabSet = set([]) #create empty set
for document in dataSet:
vocabSet = vocabSet | set(document) #union of the two sets
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else: print "the word: %s is not in my Vocabulary!" % word
return returnVec
def trainNB0(trainMatrix,trainCategory): #訓(xùn)練模型
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = ones(numWords); p1Num = ones(numWords) #拉普拉斯平滑
p0Denom = 0.0+2.0; p1Denom = 0.0 +2.0 #拉普拉斯平滑
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom) #用log()是為了避免概率乘積時浮點數(shù)下溢
p0Vect = log(p0Num/p0Denom)
return p0Vect,p1Vect,pAbusive
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
def testingNB(): #測試訓(xùn)練結(jié)果
listOPosts, listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)
def textParse(bigString): # 長字符轉(zhuǎn)轉(zhuǎn)單詞列表
import re
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
def spamTest(): #測試?yán)募?需要數(shù)據(jù)
docList = [];
classList = [];
fullText = []
for i in range(1, 26):
wordList = textParse(open('email/spam/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)
trainingSet = range(50);
testSet = []
for i in range(10):
randIndex = int(random.uniform(0, len(trainingSet)))
testSet.append(trainingSet[randIndex])
del (trainingSet[randIndex])
trainMat = [];
trainClasses = []
for docIndex in trainingSet:
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
errorCount += 1
print "classification error", docList[docIndex]
print 'the error rate is: ', float(errorCount) / len(testSet)
listOPosts,listClasses=loadDataSet()
myVocabList=createVocabList(listOPosts)
print myVocabList,'\n'
# print setOfWords2Vec(myVocabList,listOPosts[0]),'\n'
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
print trainMat
p0V,p1V,pAb=trainNB0(trainMat,listClasses)
print pAb
print p0V,'\n',p1V
testingNB()
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
您可能感興趣的文章:
- Python機(jī)器學(xué)習(xí)應(yīng)用之樸素貝葉斯篇
- Python通過樸素貝葉斯和LSTM分別實現(xiàn)新聞文本分類
- python機(jī)器學(xué)習(xí)樸素貝葉斯算法及模型的選擇和調(diào)優(yōu)詳解
- python實現(xiàn)貝葉斯推斷的例子
- python 實現(xiàn)樸素貝葉斯算法的示例
- Python實現(xiàn)樸素貝葉斯的學(xué)習(xí)與分類過程解析
- python實現(xiàn)基于樸素貝葉斯的垃圾分類算法
- 樸素貝葉斯Python實例及解析
- Python Multinomial Naive Bayes多項貝葉斯模型實現(xiàn)原理介紹
相關(guān)文章
Keras使用ImageNet上預(yù)訓(xùn)練的模型方式
這篇文章主要介紹了Keras使用ImageNet上預(yù)訓(xùn)練的模型方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-05-05
如何使用Python標(biāo)準(zhǔn)庫進(jìn)行性能測試
這篇文章主要為大家詳細(xì)介紹了如何使用Python標(biāo)準(zhǔn)庫進(jìn)行性能測試,具有一定的參考價值,感興趣的小伙伴們可以參考一下2019-06-06
python使用numpy讀取、保存txt數(shù)據(jù)的實例
今天小編就為大家分享一篇python使用numpy讀取、保存txt數(shù)據(jù)的實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-10-10
pytorch 數(shù)據(jù)預(yù)加載的實現(xiàn)示例
在PyTorch中,數(shù)據(jù)加載和預(yù)處理是深度學(xué)習(xí)中非常重要的一部分,本文主要介紹了pytorch 數(shù)據(jù)預(yù)加載的實現(xiàn)示例,具有一定的參考價值,感興趣的可以了解一下2023-12-12
Django模板變量如何傳遞給外部js調(diào)用的方法小結(jié)
這篇文章主要給大家介紹了關(guān)于Django模板變量如何傳遞給外部js調(diào)用的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對大家具有一定的參考學(xué)習(xí)價值,需要的朋友們下面跟著小編一起來學(xué)習(xí)學(xué)習(xí)吧。2017-07-07

