python實(shí)現(xiàn)樸素貝葉斯算法
本代碼實(shí)現(xiàn)了樸素貝葉斯分類器(假設(shè)了條件獨(dú)立的版本),常用于垃圾郵件分類,進(jìn)行了拉普拉斯平滑。
關(guān)于樸素貝葉斯算法原理可以參考博客中原理部分的博文。
#!/usr/bin/python # -*- coding: utf-8 -*- from math import log from numpy import* import operator import matplotlib import matplotlib.pyplot as plt from os import listdir def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0,1,0,1,0,1] return postingList,classVec def createVocabList(dataSet): vocabSet = set([]) #create empty set for document in dataSet: vocabSet = vocabSet | set(document) #union of the two sets return list(vocabSet) def setOfWords2Vec(vocabList, inputSet): returnVec = [0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 else: print "the word: %s is not in my Vocabulary!" % word return returnVec def trainNB0(trainMatrix,trainCategory): #訓(xùn)練模型 numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = ones(numWords); p1Num = ones(numWords) #拉普拉斯平滑 p0Denom = 0.0+2.0; p1Denom = 0.0 +2.0 #拉普拉斯平滑 for i in range(numTrainDocs): if trainCategory[i] == 1: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) p1Vect = log(p1Num/p1Denom) #用log()是為了避免概率乘積時(shí)浮點(diǎn)數(shù)下溢 p0Vect = log(p0Num/p0Denom) return p0Vect,p1Vect,pAbusive def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1): p1 = sum(vec2Classify * p1Vec) + log(pClass1) p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1) if p1 > p0: return 1 else: return 0 def bagOfWords2VecMN(vocabList, inputSet): returnVec = [0] * len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] += 1 return returnVec def testingNB(): #測(cè)試訓(xùn)練結(jié)果 listOPosts, listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat = [] for postinDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses)) testEntry = ['love', 'my', 'dalmation'] thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb) testEntry = ['stupid', 'garbage'] thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb) def textParse(bigString): # 長(zhǎng)字符轉(zhuǎn)轉(zhuǎn)單詞列表 import re listOfTokens = re.split(r'\W*', bigString) return [tok.lower() for tok in listOfTokens if len(tok) > 2] def spamTest(): #測(cè)試?yán)募?需要數(shù)據(jù) docList = []; classList = []; fullText = [] for i in range(1, 26): wordList = textParse(open('email/spam/%d.txt' % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(1) wordList = textParse(open('email/ham/%d.txt' % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(0) vocabList = createVocabList(docList) trainingSet = range(50); testSet = [] for i in range(10): randIndex = int(random.uniform(0, len(trainingSet))) testSet.append(trainingSet[randIndex]) del (trainingSet[randIndex]) trainMat = []; trainClasses = [] for docIndex in trainingSet: trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex])) trainClasses.append(classList[docIndex]) p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses)) errorCount = 0 for docIndex in testSet: wordVector = bagOfWords2VecMN(vocabList, docList[docIndex]) if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]: errorCount += 1 print "classification error", docList[docIndex] print 'the error rate is: ', float(errorCount) / len(testSet) listOPosts,listClasses=loadDataSet() myVocabList=createVocabList(listOPosts) print myVocabList,'\n' # print setOfWords2Vec(myVocabList,listOPosts[0]),'\n' trainMat=[] for postinDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList,postinDoc)) print trainMat p0V,p1V,pAb=trainNB0(trainMat,listClasses) print pAb print p0V,'\n',p1V testingNB()
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
- Python機(jī)器學(xué)習(xí)應(yīng)用之樸素貝葉斯篇
- Python通過樸素貝葉斯和LSTM分別實(shí)現(xiàn)新聞文本分類
- python機(jī)器學(xué)習(xí)樸素貝葉斯算法及模型的選擇和調(diào)優(yōu)詳解
- python實(shí)現(xiàn)貝葉斯推斷的例子
- python 實(shí)現(xiàn)樸素貝葉斯算法的示例
- Python實(shí)現(xiàn)樸素貝葉斯的學(xué)習(xí)與分類過程解析
- python實(shí)現(xiàn)基于樸素貝葉斯的垃圾分類算法
- 樸素貝葉斯Python實(shí)例及解析
- Python Multinomial Naive Bayes多項(xiàng)貝葉斯模型實(shí)現(xiàn)原理介紹
相關(guān)文章
Keras使用ImageNet上預(yù)訓(xùn)練的模型方式
這篇文章主要介紹了Keras使用ImageNet上預(yù)訓(xùn)練的模型方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2020-05-05如何使用Python標(biāo)準(zhǔn)庫(kù)進(jìn)行性能測(cè)試
這篇文章主要為大家詳細(xì)介紹了如何使用Python標(biāo)準(zhǔn)庫(kù)進(jìn)行性能測(cè)試,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2019-06-06python使用numpy讀取、保存txt數(shù)據(jù)的實(shí)例
今天小編就為大家分享一篇python使用numpy讀取、保存txt數(shù)據(jù)的實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-10-10詳細(xì)分析Python collections工具庫(kù)
這篇文章主要介紹了詳解Python collections工具庫(kù)的相關(guān)資料,文中講解非常細(xì)致,代碼幫助大家更好的理解和學(xué)習(xí),感興趣的朋友可以了解下2020-07-07pytorch 數(shù)據(jù)預(yù)加載的實(shí)現(xiàn)示例
在PyTorch中,數(shù)據(jù)加載和預(yù)處理是深度學(xué)習(xí)中非常重要的一部分,本文主要介紹了pytorch 數(shù)據(jù)預(yù)加載的實(shí)現(xiàn)示例,具有一定的參考價(jià)值,感興趣的可以了解一下2023-12-12Django模板變量如何傳遞給外部js調(diào)用的方法小結(jié)
這篇文章主要給大家介紹了關(guān)于Django模板變量如何傳遞給外部js調(diào)用的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面跟著小編一起來學(xué)習(xí)學(xué)習(xí)吧。2017-07-07