Python+OpenCV實現(xiàn)圖像融合的原理及代碼
根據(jù)導(dǎo)師作業(yè)安排,在學(xué)習(xí)數(shù)字圖像處理(剛薩雷斯版)第六章 彩色圖像處理 中的彩色模型后,導(dǎo)師安排了一個比較有趣的作業(yè):
融合原理為:
1 注意:遙感原RGB圖image和灰度圖Grayimage為測試用的輸入圖像;
2 步驟:(1)將RGB轉(zhuǎn)換為HSV空間(H:色調(diào),S:飽和度,V:明度);
(2)用Gray圖像誒換掉HSV中的V;
(3)替換后的HSV轉(zhuǎn)換回RGB空間即可得到結(jié)果。
書上只介紹了HSI彩色模型,并沒有說到HSV,所以需要網(wǎng)上查找資料。
Python代碼如下:
import cv2 import numpy as np import math from matplotlib import pyplot as plt def caijian(img):#裁剪圖像與否根據(jù)選擇圖像大小而定,調(diào)用了OpenCV函數(shù) weight=img.shape[0] height=img.shape[1] print(“圖像大小為:%d*%d”%(weight,height)) img=cv2.resize(img,(int(weight/2),int(height/2)),interpolation=cv2.INTER_CUBIC) return(img) def graytograyimg(img): grayimg=img1 weight=img.shape[0] height=img.shape[1] for i in range(weight): for j in range(height): grayimg[i,j]=0.299img[i,j,0]+0.587img[i,j,1]+0.114img[i,j,2] return(grayimg) def RGBtoHSV(img): b,g,r=cv2.split(img) rows,cols=b.shape H=np.ones([rows,cols],“float”) S=np.ones([rows,cols],“float”) V=np.ones([rows,cols],“float”) print(“RGB圖像大?。?d*%d”%(rows,cols)) for i in range(0, rows): for j in range(0, cols): MAX=max((b[i,j],g[i,j],r[i,j])) MIN=min((b[i,j],g[i,j],r[i,j])) V[i,j]=MAX if V[i,j]0: S[i,j]=0 else: S[i,j]=(V[i,j]-MIN)/V[i,j] if MAXMIN: H[i,j]=0 # 如果rgb三向量相同,色調(diào)為黑 elif V[i,j]==r[i,j]: H[i,j]=(60*(float(g[i,j])-b[i,j])/(V[i,j]-MIN)) elif V[i,j]==g[i,j]: H[i,j]=60*(float(b[i,j])-r[i,j])/(V[i,j]-MIN)+120 elif V[i,j]==b[i,j]: H[i,j]=60*(float(r[i,j])-g[i,j])/(V[i,j]-MIN)+240 if H[i,j]<0: H[i,j]=H[i,j]+360 H[i,j]=H[i,j]/2 S[i,j]=255*S[i,j] result=cv2.merge((H,S,V)) # cv2.merge函數(shù)是合并單通道成多通道 result=np.uint8(result) return(result) def graytoHSgry(grayimg,HSVimg): H,S,V=cv2.split(HSVimg) rows,cols=V.shape for i in range(rows): for j in range(cols): V[i,j]=grayimg[i][j][0] newimg=cv2.merge([H,S,V]) newimg=np.uint8(newimg) return newimg def HSVtoRGB(img,rgb): h1,s1,v1=cv2.split(img) rg = rgb.copy() rows,cols=h1.shape r,g,b=0.0,0.0,0.0 b1,g1,r1 = cv2.split(rg) print(“HSV圖像大小為:%d*%d”%(rows,cols)) for i in range(rows): for j in range(cols): h=h1[i][j] v=v1[i][j]/255 s=s1[i][j]/255 h=h2 hx=int(h/60.0) hi=hx%6 f=hx-hi p=v(1-s) q=v*(1-fs) t=v(1-(1-f)s) if hi0: r,g,b=v,t,p elif hi1: r,g,b=q,v,p elif hi2: r,g,b=p,v,t elif hi3: r,g,b=p,q,v elif hi4: r,g,b=t,p,v elif hi5: r,g,b=v,p,q r,g,b=(r255),(g255),(b255) r1[i][j]=int® g1[i][j]=int(g) b1[i][j]=int(b) rg=cv2.merge([b1,g1,r1]) return rg img=cv2.imread(“D:/RGB.bmp”) gray=cv2.imread(“D:/gray.bmp”) img=caijian(img) gray=caijian(gray) grayimg=graytograyimg(gray) HSVimg=RGBtoHSV(img) HSgray=graytoHSgry(grayimg,HSVimg) RGBimg=HSVtoRGB(HSgray,img) cv2.imshow(“image”,img) cv2.imshow(“Grayimage”,grayimg) cv2.imshow(“HSVimage”,HSVimg) cv2.imshow(“HSGrayimage”,HSgray) cv2.imshow(“RGBimage”,RGBimg) cv2.waitKey(0) cv2.destroyAllWindows()
以上代碼是在盡量不調(diào)用OpenCV函數(shù)的情況下編寫,其目的是熟悉圖像處理原理和Python編程,注釋很少,其中RGB轉(zhuǎn)HSV原理,HSV轉(zhuǎn)RGB原理,在CSDN中都能找到,灰度圖替換HSV中的V原理其實很簡單,看代碼就能明白,不用再找資料。
總結(jié)
以上所述是小編給大家介紹的Python+OpenCV實現(xiàn)圖像融合的原理及代碼,希望對大家有所幫助,如果大家有任何疑問請給我留言,小編會及時回復(fù)大家的。在此也非常感謝大家對腳本之家網(wǎng)站的支持!
相關(guān)文章
python re正則匹配網(wǎng)頁中圖片url地址的方法
今天小編就為大家分享一篇python re正則匹配網(wǎng)頁中圖片url地址的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-12-124種方法教你利用Python發(fā)現(xiàn)數(shù)據(jù)的規(guī)律
發(fā)現(xiàn)數(shù)據(jù)的規(guī)律是數(shù)據(jù)分析和數(shù)據(jù)科學(xué)中非常重要的一個步驟。這篇文章主要給大家整理了4個可以發(fā)現(xiàn)數(shù)據(jù)規(guī)律的方法,希望對大家有所幫助2023-03-03tensorflow將圖片保存為tfrecord和tfrecord的讀取方式
今天小編就為大家分享一篇tensorflow將圖片保存為tfrecord和tfrecord的讀取方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-02-02解決Python3用PIL的ImageFont輸出中文亂碼的問題
今天小編大家分享一篇解決Python3用PIL的ImageFont輸出中文亂碼的問題,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-08-08淺談python累加求和+奇偶數(shù)求和_break_continue
這篇文章主要介紹了淺談python累加求和+奇偶數(shù)求和_break_continue,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-02-02