欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python編程深度學(xué)習(xí)計(jì)算庫之numpy

 更新時(shí)間:2018年12月28日 11:22:49   作者:liumiaocn  
今天小編就為大家分享一篇關(guān)于Python編程深度學(xué)習(xí)計(jì)算庫之numpy,小編覺得內(nèi)容挺不錯(cuò)的,現(xiàn)在分享給大家,具有很好的參考價(jià)值,需要的朋友一起跟隨小編來看看吧

NumPy是python下的計(jì)算庫,被非常廣泛地應(yīng)用,尤其是近來的深度學(xué)習(xí)的推廣。在這篇文章中,將會(huì)介紹使用numpy進(jìn)行一些最為基礎(chǔ)的計(jì)算。

NumPy vs SciPy

NumPy和SciPy都可以進(jìn)行運(yùn)算,主要區(qū)別如下

最近比較熱門的深度學(xué)習(xí),比如在神經(jīng)網(wǎng)絡(luò)的算法,多維數(shù)組的使用是一個(gè)極為重要的場(chǎng)景。如果你熟悉tensorflow中的tensor的概念,你會(huì)非常清晰numpy的作用。所以熟悉Numpy可以說是使用python進(jìn)行深度學(xué)習(xí)入門的一個(gè)基礎(chǔ)知識(shí)。

安裝

liumiaocn:tmp liumiao$ pip install numpy
Collecting numpy
 Downloading https://files.pythonhosted.org/packages/b6/5e/4b2c794fb57a42e285d6e0fae0e9163773c5a6a6a7e1794967fc5d2168f2/numpy-1.14.5-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7MB)
  100% |████████████████████████████████| 4.7MB 284kB/s 
Installing collected packages: numpy
Successfully installed numpy-1.14.5
liumiaocn:tmp liumiao$

確認(rèn)

liumiaocn:tmp liumiao$ pip show numpy
Name: numpy
Version: 1.14.5
Summary: NumPy: array processing for numbers, strings, records, and objects.
Home-page: http://www.numpy.org
Author: Travis E. Oliphant et al.
Author-email: None
License: BSD
Location: /usr/local/lib/python2.7/site-packages
Requires: 
Required-by: 
liumiaocn:tmp liumiao$

使用

使用numpy的數(shù)組

使用如下例子簡(jiǎn)單來理解一下numpy的數(shù)組的使用:

liumiaocn:tmp liumiao$ cat np-1.py 
#!/usr/local/bin/python
import numpy as np
arr = [1,2,3,4]
print("array arr: ", arr)
np_arr = np.array(arr)
print("numpy array: ", np_arr)
print("doulbe calc : ", 2 * np_arr)
print("ndim: ", np_arr.ndim)
liumiaocn:tmp liumiao$ python np-1.py 
('array arr: ', [1, 2, 3, 4])
('numpy array: ', array([1, 2, 3, 4]))
('doulbe calc : ', array([2, 4, 6, 8]))
('ndim: ', 1)
liumiaocn:tmp liumiao$

多維數(shù)組&ndim/shape

ndim在numpy中指的是數(shù)組的維度,如果是2維值則為2,在下面的例子中構(gòu)造一個(gè)步進(jìn)為2的等差數(shù)列,然后將其進(jìn)行維度的轉(zhuǎn)換同時(shí)輸出數(shù)組的ndim和shape的值以輔助對(duì)于ndim和shape含義的理解。

liumiaocn:tmp liumiao$ cat np-2.py 
#!/usr/local/bin/python
import numpy as np
arithmetic = np.arange(0,16,2)
print(arithmetic)
print("ndim: ",arithmetic.ndim," shape:", arithmetic.shape)
#resize to 2*4 2-dim array
arithmetic.resize(2,4)
print(arithmetic)
print("ndim: ",arithmetic.ndim," shape:", arithmetic.shape)
#resize to 2*2*2 3-dim array
array = arithmetic.resize(2,2,2)
print(arithmetic)
print("ndim: ",arithmetic.ndim," shape:", arithmetic.shape)
liumiaocn:tmp liumiao$ python np-2.py 
[ 0 2 4 6 8 10 12 14]
('ndim: ', 1, ' shape:', (8,))
[[ 0 2 4 6]
 [ 8 10 12 14]]
('ndim: ', 2, ' shape:', (2, 4))
[[[ 0 2]
 [ 4 6]]
 [[ 8 10]
 [12 14]]]
('ndim: ', 3, ' shape:', (2, 2, 2))
liumiaocn:tmp liumiao$ 

另外也可以使用reshape進(jìn)行維度的調(diào)整。

等差數(shù)列&等比數(shù)列

numpy和matlab寫起來有很多函數(shù)基本一樣,比如等比數(shù)列和等差數(shù)列可以使用linspace和logspace進(jìn)行。

logspace缺省的時(shí)候指的是以10給底,但是可以通過指定base進(jìn)行設(shè)定

liumiaocn:tmp liumiao$ cat np-3.py 
#!/usr/local/bin/python
import numpy as np
print("np.linspace(1,4,4):", np.linspace(1,4,4))
print("np.logspace(1,4,4):", np.logspace(1,4,4))
print("np.logspace(1,4,4,base=2):",np.logspace(1,4,4,base=2))
liumiaocn:tmp liumiao$ python np-3.py 
('np.linspace(1,4,4):', array([1., 2., 3., 4.]))
('np.logspace(1,4,4):', array([  10.,  100., 1000., 10000.]))
('np.logspace(1,4,4,base=2):', array([ 2., 4., 8., 16.]))
liumiaocn:tmp liumiao$

數(shù)組初始化

numpy提供了很方便的初始化的函數(shù),比如

liumiaocn:tmp liumiao$ cat np-4.py 
#!/usr/local/bin/python
import numpy as np
print("np.zeros(6):",np.zeros(6))
print("np.zeros((2,3)):",np.zeros((2,3)))
print("np.ones(6):",np.ones(6))
print("np.ones((2,3)):",np.ones((2,3)))
print("np.random.random(6):",np.random.random(6))
print("np.random.random(6):",np.random.random(6))
print("np.random.random((2,3)):",np.random.random((2,3)))
print("np.random.seed(1234)")
np.random.seed(1234)
print("np.random.random(6):",np.random.random(6))
print("np.random.seed(1234)")
np.random.seed(1234)
print("np.random.random(6):",np.random.random(6))
liumiaocn:tmp liumiao$ python np-4.py 
('np.zeros(6):', array([0., 0., 0., 0., 0., 0.]))
('np.zeros((2,3)):', array([[0., 0., 0.],
    [0., 0., 0.]]))
('np.ones(6):', array([1., 1., 1., 1., 1., 1.]))
('np.ones((2,3)):', array([[1., 1., 1.],
    [1., 1., 1.]]))
('np.random.random(6):', array([0.06909968, 0.27468844, 0.59127996, 0.56973602, 0.45985047,
    0.95384945]))
('np.random.random(6):', array([0.62996648, 0.2824114 , 0.2698051 , 0.09262053, 0.50862503,
    0.96600255]))
('np.random.random((2,3)):', array([[0.66880129, 0.8834006 , 0.49458989],
    [0.28335563, 0.65711274, 0.76726504]]))
np.random.seed(1234)
('np.random.random(6):', array([0.19151945, 0.62210877, 0.43772774, 0.78535858, 0.77997581,
    0.27259261]))
np.random.seed(1234)
('np.random.random(6):', array([0.19151945, 0.62210877, 0.43772774, 0.78535858, 0.77997581,
    0.27259261]))
liumiaocn:tmp liumiao$

總結(jié)

以上就是這篇文章的全部?jī)?nèi)容了,希望本文的內(nèi)容對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,謝謝大家對(duì)腳本之家的支持。如果你想了解更多相關(guān)內(nèi)容請(qǐng)查看下面相關(guān)鏈接

相關(guān)文章

最新評(píng)論