Python 確定多項式擬合/回歸的階數實例
通過 1至10 階來擬合對比 均方誤差及R評分,可以確定最優(yōu)的“最大階數”。
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression,Perceptron
from sklearn.metrics import mean_squared_error,r2_score
from sklearn.model_selection import train_test_split
X = np.array([-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10]).reshape(-1, 1)
y = np.array(2*(X**4) + X**2 + 9*X + 2)
#y = np.array([300,500,0,-10,0,20,200,300,1000,800,4000,5000,10000,9000,22000]).reshape(-1, 1)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
rmses = []
degrees = np.arange(1, 10)
min_rmse, min_deg,score = 1e10, 0 ,0
for deg in degrees:
# 生成多項式特征集(如根據degree=3 ,生成 [[x,x**2,x**3]] )
poly = PolynomialFeatures(degree=deg, include_bias=False)
x_train_poly = poly.fit_transform(x_train)
# 多項式擬合
poly_reg = LinearRegression()
poly_reg.fit(x_train_poly, y_train)
#print(poly_reg.coef_,poly_reg.intercept_) #系數及常數
# 測試集比較
x_test_poly = poly.fit_transform(x_test)
y_test_pred = poly_reg.predict(x_test_poly)
#mean_squared_error(y_true, y_pred) #均方誤差回歸損失,越小越好。
poly_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred))
rmses.append(poly_rmse)
# r2 范圍[0,1],R2越接近1擬合越好。
r2score = r2_score(y_test, y_test_pred)
# degree交叉驗證
if min_rmse > poly_rmse:
min_rmse = poly_rmse
min_deg = deg
score = r2score
print('degree = %s, RMSE = %.2f ,r2_score = %.2f' % (deg, poly_rmse,r2score))
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(degrees, rmses)
ax.set_yscale('log')
ax.set_xlabel('Degree')
ax.set_ylabel('RMSE')
ax.set_title('Best degree = %s, RMSE = %.2f, r2_score = %.2f' %(min_deg, min_rmse,score))
plt.show()


因為因變量 Y = 2*(X**4) + X**2 + 9*X + 2 ,自變量和因變量是完整的公式,看圖很明顯,degree >=4 的都符合,擬合函數都正確。(RMSE 最小,R平方非負且接近于1,則模型最好)
如果將 Y 值改為如下:
y = np.array([300,500,0,-10,0,20,200,300,1000,800,4000,5000,10000,9000,22000]).reshape(-1, 1)


degree=3 是最好的,且 r 平方也最接近于1(注意:如果 R 平方為負數,則不準確,需再次測試。因樣本數據較少,可能也會判斷錯誤)。
以上這篇Python 確定多項式擬合/回歸的階數實例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
python-opencv 中值濾波{cv2.medianBlur(src, ksize)}的用法
這篇文章主要介紹了python-opencv 中值濾波{cv2.medianBlur(src, ksize)}的用法,具有很好的參考價值,希望對大家有所幫助。2021-06-06
教你用Python實現簡易版學生信息管理系統(tǒng)(含源碼)
學生管理信息系統(tǒng)主要用來日常查詢學生信息,以及及時更新數據和修改數據.用python實現簡單學生管理信息系統(tǒng)不僅可以滿足以上要求,也可以鞏固之前學習的基礎,需要的朋友可以參考下2021-06-06
Python中str is not callable問題詳解及解決辦法
這篇文章主要介紹了Python中str is not callable問題詳解及解決辦法的相關資料,需要的朋友可以參考下2017-02-02

