Python mutiprocessing多線程池pool操作示例
本文實例講述了Python mutiprocessing多線程池pool操作。分享給大家供大家參考,具體如下:
python — mutiprocessing 多線程 pool

腳本代碼:
root@72132server:~/python/multiprocess# ls
multiprocess_pool.py multprocess.py
root@72132server:~/python/multiprocess# cat multiprocess_pool.py
#!/usr/bin/python
# --*-- coding:utf-8 --*--
import multiprocessing
import sys,os,time
result = []#把運行的進程池放入,空的列表
def run(msg):#定義正在處理進程編號數(shù)的函數(shù)功能
print 'threading number:%s %s' %(msg,os.getpid())#打印正在處理的進程編號數(shù)與對應的系統(tǒng)進程號
time.sleep(2)
p = multiprocessing.Pool(processes = 25)#綁定事例,同時執(zhí)行25個線程
for i in range(100):
result.append(p.apply_async(run,('%s' %i,)))#異步傳輸正在運行的進程數(shù)字號碼
p.close()#關閉正在運行的25個進程
#p.join()
for res in result:#獲取運行結果
res.get(timeout=5)
root@72132server:~/python/multiprocess#
運行情況:
1)腳本運行
root@72132server:~/python/multiprocess# python multiprocess_pool.py threading number:0 27912 threading number:1 27915 threading number:2 27913 threading number:3 27916 threading number:4 27917 threading number:5 27918 threading number:6 27919 threading number:7 27920 threading number:8 27922 threading number:9 27923 threading number:10 27924 threading number:11 27925 threading number:12 27926 threading number:13 27927 threading number:14 27928 threading number:15 27914 threading number:16 27929 threading number:17 27921 threading number:18 27930 threading number:19 27931 threading number:20 27932 threading number:21 27934 threading number:22 27935 threading number:23 27936 threading number:24 27933 threading number:25 27912 threading number:26 27915 threading number:27 27917 threading number:28 27918 threading number:29 27916 threading number:30 27913 threading number:31 27922 threading number:32 27919 threading number:33 27920 threading number:34 27923 threading number:35 27924 threading number:36 27925 threading number:37 27927 threading number:38 27921 threading number:39 27930 threading number:40 27932 threading number:41 27934 threading number:42 27935 threading number:43 27926 threading number:44 27931 threading number:45 27928 threading number:46 27929 threading number:47 27914 threading number:48 27933 threading number:49 27936 threading number:50 27912 threading number:51 27915
2)進程查看(25個進程同時運行)
root@72132server:~/python/multiprocess# ps -ef | grep multi root 27905 23930 0 22:39 pts/3 00:00:00 grep multi root@72132server:~/python/multiprocess# ps -ef | grep multi root 27911 20609 1 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27912 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27913 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27914 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27915 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27916 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27917 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27918 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27919 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27920 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27921 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27922 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27923 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27924 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27925 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27926 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27927 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27928 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27929 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27930 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27931 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27932 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27933 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27934 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27935 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27936 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27941 23930 0 22:39 pts/3 00:00:00 grep multi root@72132server:~/python/multiprocess# ps -ef | grep multi root 27911 20609 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27912 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27913 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27914 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27915 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27916 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27917 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27918 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27919 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27920 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27921 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27922 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27923 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27924 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27925 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27926 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27927 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27928 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27929 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27930 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27931 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27932 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27933 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27934 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27935 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27936 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27943 23930 0 22:39 pts/3 00:00:00 grep multi root@72132server:~/python/multiprocess#
更多關于Python相關內容感興趣的讀者可查看本站專題:《Python進程與線程操作技巧總結》、《Python數(shù)據(jù)結構與算法教程》、《Python函數(shù)使用技巧總結》、《Python字符串操作技巧匯總》、《Python入門與進階經典教程》、《Python+MySQL數(shù)據(jù)庫程序設計入門教程》及《Python常見數(shù)據(jù)庫操作技巧匯總》
希望本文所述對大家Python程序設計有所幫助。
相關文章
Python?matplotlib?plotly繪制圖表詳解
plotly本身是個生態(tài)非常復雜的繪圖工具,它對很多編程語言提供接口。交互式和美觀易用應該是?Plotly?最大的優(yōu)勢,而?Matplotlib?的特點則是可定制化程度高,但語法也相對難學,各有優(yōu)缺點。本文將通過示例詳細講解二者是如何繪制圖表的,需要的可以參考一下2022-03-03
python將txt等文件中的數(shù)據(jù)讀為numpy數(shù)組的方法
今天小編就為大家分享一篇python將txt等文件中的數(shù)據(jù)讀為numpy數(shù)組的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-12-12
python2 與 python3 實現(xiàn)共存的方法
這篇文章主要介紹了python2 與 python3 實現(xiàn)共存的方法,本文圖文并茂給大家介紹的非常詳細,具有一定的參考借鑒價值,需要的朋友可以參考下2018-07-07
對python 通過ssh訪問數(shù)據(jù)庫的實例詳解
今天小編就為大家分享一篇對python 通過ssh訪問數(shù)據(jù)庫的實例詳解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-02-02
python爬蟲之利用Selenium+Requests爬取拉勾網(wǎng)
這篇文章主要介紹了python爬蟲之利用Selenium+Requests爬取拉勾網(wǎng),文中有非常詳細的代碼示例,對正在學習python爬蟲的小伙伴們有很好的幫助,需要的朋友可以參考下2021-04-04

