使用Python快速制作可視化報(bào)表的方法
我們可以試用可視化包——Pyechart。
Echarts是百度開源的一個(gè)數(shù)據(jù)可視化JS庫,主要用于數(shù)據(jù)可視化。
pyecharts是一個(gè)用于生成Echarts圖標(biāo)的類庫。實(shí)際就是Echarts與Python的對接。
安裝
pyecharts兼容Python2和Python3。執(zhí)行代碼:
pip install pyecharts(快捷鍵Windows+R——輸入cmd)
初級圖表
1.柱狀圖/條形圖
from pyecharts import Bar
attr=["襯衫","羊毛衫","雪紡衫","褲子","高跟鞋","襪子"]
v1=[5,20,36,10,75,90]
v2=[10,25,8,60,20,80]
bar=Bar("各商家產(chǎn)品銷售情況")
bar.add("商家A",attr,v1,is_stack=True)
bar.add("商家B",attr,v2,is_stack=True)
bar#bar.render()

2.餅圖
from pyecharts import Pie
attr=["襯衫","羊毛衫","雪紡衫","褲子","高跟鞋","鞋子"]
v1=[11,12,13,10,10,10]
pie=Pie("各產(chǎn)品銷售情況")
pie.add("",attr,v1,is_label_show=True)
pie #pie.render()

3.圓環(huán)圖
from pyecharts import Pie
attr=["襯衫","羊毛衫","雪紡衫","褲子","高跟鞋","鞋子"]
v1=[11,12,13,10,10,10]
pie=Pie("餅圖—圓環(huán)圖示例",title_pos="center")
pie.add("",attr,v1,radius=[40,75],label_text_color=None,
is_label_show=True,legend_orient="vertical",
legend_pos="left")
pie

4.散點(diǎn)圖
from pyecharts import Scatter
v1=[10,20,30,40,50,60]
v2=[10,20,30,40,50,60]
scatter=Scatter("散點(diǎn)圖示例")
scatter.add("A",v1,v2)
scatter.add("B",v1[::-1],v2)
scatter

5.儀表盤
from pyecharts import Gauge
gauge=Gauge("業(yè)務(wù)指標(biāo)完成率—儀表盤")
gauge.add("業(yè)務(wù)指標(biāo)","完成率",66.66)
gauge

6.熱力圖
import random
from pyecharts import HeatMap
x_axis=[
"12a","1a","2a","3a","4a","5a","6a","7a","8a","9a","10a","11a",
"12p","1p","2p","3p","4p","5p","6p","7p","8p","9p","10p","11p",]
y_axis=[
"Saturday","Friday","Thursday","Wednesday","Tuesday","Monday","Sunday"]
data=[[i,j,random.randint(0,50)] for i in range(24) for j in range(7)]
heatmap=HeatMap()
heatmap.add("熱力圖直角坐標(biāo)系",x_axis,y_axis,data,is_visualmap=True,
visual_text_color="#000",visual_orient="horizontal")
heatmap

高級圖表
1.漏斗圖
from pyecharts import Funnel
attr=["潛在","接觸","意向","明確","投入","談判","成交"]
value=[140,120,100,80,60,40,20]
funnel=Funnel("銷售管理分析漏斗圖")
funnel.add("商品",attr,value,is_label_show=True,
label_pos="inside",label_text_color="#fff")
funnel
2.詞云圖

from pyecharts import WordCloud
name=[
"Sam s Club","Macys","Amy Schumer","Jurassic World","Charter Communications",
"Chick Fil A","Planet Fitness","Pitch Perfect","Express","Home","Johnny Depp",
"Lena Dunham","Lewis Hamilton","KXAN","Mary Ellen Mark","Farrah Abraham",
"Rita Ora","Serena Williams","NCAA baseball tournament","Point Break"
]
value=[
10000,6181,4386,4055,2467,2244,1898,1484,1112,
965,847,582,555,550,462,366,360,282,273,265]
wordcloud=WordCloud(width=1300,height=620)
wordcloud.add("",name,value,word_size_range=[20,100])
wordcloud

3.組合圖
from pyecharts import Line,Pie,Grid
line=Line("折線圖",width=1200)
attr=["周一","周二","周三","周四","周五","周六","周日"]
line.add("最高氣溫",attr,[11,11,15,13,12,13,10],
mark_point=["max","min"],mark_line=["average"])
line.add("最低氣溫",attr,[1,-2,2,5,3,2,0],
mark_point=["max","min"],mark_line=["average"],
legend_pos="20%")
attr=["襯衫","羊毛衫","雪紡衫","褲子","高跟鞋","襪子"]
v1=[11,12,13,10,10,10]
pie=Pie("餅圖",title_pos="55%")
pie.add("",attr,v1,radius=[45,65],center=[65,50],
legend_pos="80%",legend_orient="vertical")
grid=Grid()
grid.add(line,grid_right="55%")
grid.add(pie,grid_left="60%")
grid

以上這篇使用Python快速制作可視化報(bào)表的方法就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
python 如何利用chinese_calendar 獲取上一個(gè)工作日日期
這篇文章主要介紹了python 利用chinese_calendar 獲取上一個(gè)工作日日期,本文給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2023-03-03
Python中順序表原理與實(shí)現(xiàn)方法詳解
這篇文章主要介紹了Python中順序表原理與實(shí)現(xiàn)方法,結(jié)合實(shí)例形式分析了Python順序表的概念、原理及增刪查等相關(guān)實(shí)現(xiàn)技巧,需要的朋友可以參考下2019-12-12
python實(shí)現(xiàn)NB-IoT模塊遠(yuǎn)程控制
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)NB-IoT模塊遠(yuǎn)程控制,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2018-06-06

