欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Linux下搭建Spark 的 Python 編程環(huán)境的方法

 更新時間:2019年06月12日 15:03:17   作者:ydcode  
這篇文章主要介紹了Linux下搭建Spark 的 Python 編程環(huán)境的方法,本文通過實例代碼給大家介紹的非常詳細(xì),具有一定的參考借鑒價值,需要的朋友可以參考下

Spark編程環(huán)境

Spark 可以獨(dú)立安裝使用,也可以和Hadoop 一起安裝使用。在安裝 Spark 之前,首先確保你的電腦上已經(jīng)安裝了 Java 8 或者更高的版本。

Spark 安裝

訪問 Spark 下載頁面 ,并選擇最新版本的 Spark 直接下載,當(dāng)前的最新版本是 2.4.2 。下載好之后需要解壓縮到安裝文件夾中,看自己的喜好,我們是安裝到了 /opt 目錄下。

tar -xzf spark-2.4.2-bin-hadoop2.7.tgz
mv spark-2.4.2-bin-hadoop2.7/opt/spark-2.4.2

為了能在終端中直接打開 Spark 的 shell 環(huán)境,需要配置相應(yīng)的環(huán)境變量。這里我由于使用的是 zsh,所以需要配置環(huán)境到 ~/.zshrc 中。

沒有安裝 zsh 的可以配置到 ~/.bashrc 中

# 編輯 zshrc 文件
sudo gedit ~/.zshrc
# 增加以下內(nèi)容:export SPARK_HOME=/opt/spark-2.4.2export PATH=$SPARK_HOME/bin:$PATH
export <a  target="_blank" title="Python">Python</a>PATH=$SPARK_HOME/python:$SPARK_HOME/python/lib/py4j-0.10.4-src.zip:$PYTHONPATH

配置完成后,在 shell 中輸入 spark-shell 或者 pyspark 就可以進(jìn)入到 Spark 的交互式編程環(huán)境中,前者是進(jìn)入 Scala 交互式環(huán)境,后者是進(jìn)入 Python 交互式環(huán)境。

配置 Python 編程環(huán)境

在這里介紹兩種編程環(huán)境, Jupyter 和 Visual Studio Code。前者方便進(jìn)行交互式編程,后者方便最終的集成式開發(fā)。

PySpark in Jupyter

首先介紹如何在 Jupyter 中使用 Spark,注意這里 Jupyter notebook 和 Jupyter lab 是通用的方式,此處以 Jupyter lab 中的配置為例:

在 Jupyter lab 中使用 PySpark 存在兩種方法:

pyspark 將自動打開一個 Jupyter lab;
findSpark 包來加載 PySpark。

第一個選項更快,但特定于Jupyter筆記本,第二個選項是一個更廣泛的方法,使PySpark在你任意喜歡的IDE中都可用,強(qiáng)烈推薦第二種方法。

方法一:配置 PySpark 啟動器

更新 PySpark 啟動器的環(huán)境變量,繼續(xù)在 ~/.zshrc 文件中增加以下內(nèi)容:

export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS='lab'

如果要使用 jupyter notebook,則將第二個參數(shù)的值改為 notebook

刷新環(huán)境變量或者重啟機(jī)器,并執(zhí)行 pyspark 命令,將直接打開一個啟動了 Spark 的 Jupyter lab。

pyspark

 

方法二:使用 findSpark 包

在 Jupyter lab 中使用 PySpark 還有另一種更通用的方法:使用 findspark 包在代碼中提供 Spark 上下文環(huán)境。

findspark 包不是特定于 Jupyter lab 的,您也可以其它的 IDE 中使用該方法,因此這種方法更通用,也更推薦該方法。

首先安裝 findspark:

pip install findspark

之后打開一個 Jupyter lab,我們在進(jìn)行 Spark 編程時,需要先導(dǎo)入 findspark 包,示例如下:

# 導(dǎo)入 findspark 并初始化import findspark
findspark.init()from pyspark importSparkConf,SparkContextimport random
# 配置 Spark
conf =SparkConf().setMaster("local[*]").setAppName("Pi")# 利用上下文啟動 Spark
sc =SparkContext(conf=conf)
num_samples =100000000definside(p):   
  x, y = random.random(), random.random()return x*x + y*y <1
count = sc.parallelize(range(0, num_samples)).filter(inside).count()
pi =4* count / num_samples
print(pi)
sc.stop()

運(yùn)行示例:

 

PySpark in VScode

Visual Studio Code 作為一個優(yōu)秀的編輯器,對于 Python 開發(fā)十分便利。這里首先推薦個人常用的一些插件:

Python:必裝的插件,提供了Python語言支持;

Code Runner:支持運(yùn)行文件中的某些片段;

此外,在 VScode 上使用 Spark 就不需要使用 findspark 包了,可以直接進(jìn)行編程:

from pyspark importSparkContext,SparkConf
conf =SparkConf().setMaster("local[*]").setAppName("test")
sc =SparkContext(conf=conf)
logFile ="file:///opt/spark-2.4.2/README.md"
logData = sc.textFile(logFile,2).cache()
numAs = logData.filter(lambda line:'a'in line).count()
numBs = logData.filter(lambda line:'b'in line).count()print("Lines with a: {0}, Lines with b:{1

總結(jié)

以上所述是小編給大家介紹的Linux下搭建Spark 的 Python 編程環(huán)境的方法,希望對大家有所幫助,如果大家有任何疑問歡迎給我留言,小編會及時回復(fù)大家的!

相關(guān)文章

最新評論