python繪制地震散點(diǎn)圖
本項(xiàng)目是利用五年左右的世界地震數(shù)據(jù),通過(guò)python的pandas庫(kù)、matplotlib庫(kù)、basemap庫(kù)等進(jìn)行數(shù)據(jù)可視化,繪制出地震散點(diǎn)圖。主要代碼如下所示
from __future__ import division
import pandas as pd
from pandas import Series,DataFrame
import numpy as np
from matplotlib.patches import Polygon
chi_provinces = ['北京','天津','上海','重慶',
'河北','山西','遼寧','吉林',
'黑龍江','江蘇','浙江','安徽',
'福建','江西','山東','河南',
'湖北','湖南','廣東','海南',
'四川','貴州','云南','陜西',
'甘肅','青海','臺(tái)灣','內(nèi)蒙古',
'廣西','西藏','寧夏','新疆',
'香港','澳門'] #list of chinese provinces
def is_in_china(str):
if str[:2] in chi_provinces:
return True
else:
return False
def convert_data_2014(x):
try:
return float(x.strip())
except ValueError:
return x
except AttributeError:
return x
def format_lat_lon(x):
try:
return x/100
except(TypeError):
return np.nan
df = pd.read_excel(r'C:/Users/GGWS/Desktop/shuju/201601-12.xls')
df = df.append(pd.read_excel(r'C:/Users/GGWS/Desktop/shuju/201201-12.xls'),ignore_index = True)
df = df.append(pd.read_excel(r'C:/Users/GGWS/Desktop/shuju/shuju.xls'),ignore_index = True)
df = df.append(pd.read_excel(r'C:/Users/GGWS/Desktop/shuju/201501-12.xls'),ignore_index = True)
df_2014 = pd.read_excel(r'C:/Users/GGWS/Desktop/shuju/201401-12.xls') #have to introduce statics of 2014 independently because the format and the type of data of specific column in this data set are different from others
df['longitude'] = df['longitude'].apply(convert_data_2014)
df['latitude'] = df['latitude'].apply(convert_data_2014)
df_2014['longitude'] = df_2014['longitude'].apply(convert_data_2014)
df_2014['latitude'] = df_2014['latitude'].apply(convert_data_2014)
df = df.append(df_2014,ignore_index = True)
df = df[['latitude','longitude','magnitude','referenced place','time']] #only save four columns as valuable statics
df[['longitude','latitude']] = df[['longitude','latitude']].applymap(format_lat_lon) #use function "applymap" to convert the format of the longitude and latitude statics
df = df.dropna(axis=0,how='any') #drop all rows that have any NaN values
format_magnitude = lambda x: float(str(x).strip('ML'))
df['magnitude'] = df['magnitude'].apply(format_magnitude)
#df = df[df['referenced place'].apply(is_in_china)]
lon_mean = (df['longitude'].groupby(df['referenced place'])).mean()
lat_mean = (df['latitude'].groupby(df['referenced place'])).mean()
group_counts = (df['magnitude'].groupby(df['referenced place'])).count()
after_agg_data = pd.concat([lon_mean,lat_mean,group_counts], axis = 1 )
after_agg_data.rename(columns = {'magnitude':'counts'} , inplace = True)
#aggregate after grouping the data
after_sorted_data = after_agg_data.sort_values(by = 'counts',ascending = False)
new_index = np.arange(len(after_sorted_data.index))
after_sorted_data.index = new_index
paint_data = after_sorted_data[after_sorted_data['counts']>=after_sorted_data['counts'][80]]
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
plt.figure(figsize=(16,8))
m = Basemap()
m.readshapefile(r'C:/Users/GGWS/Desktop/jb/gadm36_CHN_1', 'states', drawbounds=True)
ax = plt.gca()
'''
for nshape,seg in enumerate (m.states):
poly = Polygon(seg,facecolor = 'r')
ax.add_patch(poly)
'''
m.drawcoastlines(linewidth=0.5)
m.drawcountries(linewidth=0.5)
m.shadedrelief()
for indexs in df.index:
lon2,lat2 = df.loc[indexs].values[1],df.loc[indexs].values[0]
x,y = m(lon2,lat2)
m.plot(x,y,'ro',markersize = 0.5) #獲取經(jīng)度值
'''
for indexs in after_sorted_data.index[:80]:
lon,lat = after_sorted_data.loc[indexs].values[0],after_sorted_data.loc[indexs].values[1]
x,y = m(lon,lat)
m.plot(x,y,'wo',markersize = 10*(after_sorted_data.loc[indexs].values[2]/after_sorted_data.loc[0].values[2]))
'''
plt.title("Worldwide Earthquake")
plt.show()
#indexs-len(df.index)+80
效果如下

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Python跨文件實(shí)現(xiàn)字符串填充的三種實(shí)現(xiàn)方法
本文主要介紹了Python跨文件實(shí)現(xiàn)字符串填充的三種實(shí)現(xiàn)方法,包括format方法、%格式化操作符和eval函數(shù)結(jié)合f-string,具有一定的參考價(jià)值,感興趣的可以了解一下2024-12-12
pytest allure添加環(huán)境信息實(shí)例講解
這篇文章主要介紹了pytest allure添加環(huán)境信息實(shí)例,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2022-12-12
Python抓取移動(dòng)App數(shù)據(jù)使用mitmweb監(jiān)聽(tīng)請(qǐng)求與響應(yīng)
這篇文章主要介紹了Python抓取移動(dòng)App數(shù)據(jù)使用mitmweb監(jiān)聽(tīng)請(qǐng)求與響應(yīng),mitmproxy控制臺(tái)方式、mitmdump與Python對(duì)接的方式、mitmweb可視化方式,需要的朋友可以參考一下2022-01-01
python 將大文件切分為多個(gè)小文件的實(shí)例
今天小編就為大家分享一篇python 將大文件切分為多個(gè)小文件的實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-01-01
python如果快速判斷數(shù)字奇數(shù)偶數(shù)
這篇文章主要介紹了python如果快速判斷數(shù)字奇數(shù)偶數(shù),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-11-11
Python tornado隊(duì)列示例-一個(gè)并發(fā)web爬蟲(chóng)代碼分享
這篇文章主要介紹了Python tornado隊(duì)列示例-一個(gè)并發(fā)web爬蟲(chóng)代碼分享,具有一定借鑒價(jià)值,需要的朋友可以參考下2018-01-01
pytorch 如何使用amp進(jìn)行混合精度訓(xùn)練
這篇文章主要介紹了pytorch 使用amp進(jìn)行混合精度訓(xùn)練的操作,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2021-05-05

