欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

pandas數(shù)據(jù)篩選和csv操作的實(shí)現(xiàn)方法

 更新時(shí)間:2019年07月02日 14:49:57   作者:Fate0729  
這篇文章主要介紹了pandas數(shù)據(jù)篩選和csv操作的實(shí)現(xiàn)方法,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧

1. 數(shù)據(jù)篩選

 a b c
0 0 2 4
1 6 8 10
2 12 14 16
3 18 20 22
4 24 26 28
5 30 32 34
6 36 38 40
7 42 44 46
8 48 50 52
9 54 56 58

(1)單條件篩選

df[df['a']>30]
# 如果想篩選a列的取值大于30的記錄,但是之顯示滿足條件的b,c列的值可以這么寫
df[['b','c']][df['a']>30]
# 使用isin函數(shù)根據(jù)特定值篩選記錄。篩選a值等于30或者54的記錄
df[df.a.isin([30, 54])]

(2)多條件篩選

可以使用&(并)與| (或)操作符或者特定的函數(shù)實(shí)現(xiàn)多條件篩選

# 使用&篩選a列的取值大于30,b列的取值大于40的記錄
df[(df['a'] > 30) & (df['b'] > 40)]

(3)索引篩選

a. 切片操作

df[行索引,列索引]或df[[列名1,列名2]]

#使用切片操作選擇特定的行
df[1:4]
#傳入列名選擇特定的列
df[['a','c']]

b. loc函數(shù)

當(dāng)每列已有column name時(shí),用 df [ ‘a(chǎn)' ] 就能選取出一整列數(shù)據(jù)。如果你知道column names 和index,且兩者都很好輸入,可以選擇 .loc同時(shí)進(jìn)行行列選擇。

In [28]: df.loc[0,'c']
Out[28]: 4

In [29]: df.loc[1:4,['a','c']]
Out[29]:
 a c
1 6 10
2 12 16
3 18 22
4 24 28

In [30]: df.loc[[1,3,5],['a','c']]
Out[30]:
 a c
1 6 10
3 18 22
5 30 34

c. iloc函數(shù)

如果column name太長(zhǎng),輸入不方便,或者index是一列時(shí)間序列,更不好輸入,那就可以選擇 .iloc了,該方法接受列名的index,iloc 使得我們可以對(duì)column使用slice(切片)的方法對(duì)數(shù)據(jù)進(jìn)行選取。這邊的 i 我覺得代表index,比較好記點(diǎn)。

In [35]: df.iloc[0,2]
Out[35]: 4

In [34]: df.iloc[1:4,[0,2]]
Out[34]:
 a c
1 6 10
2 12 16
3 18 22

In [36]: df.iloc[[1,3,5],[0,2]]
Out[36]:
 a c
1 6 10
3 18 22
5 30 34

In [38]: df.iloc[[1,3,5],0:2]
Out[38]:
 a b
1 6 8
3 18 20
5 30 32

d. ix函數(shù)

ix的功能更加強(qiáng)大,參數(shù)既可以是索引,也可以是名稱,相當(dāng)于,loc和iloc的合體。需要注意的是在使用的時(shí)候需要統(tǒng)一,在行選擇時(shí)同時(shí)出現(xiàn)索引和名稱, 同樣在同行選擇時(shí)同時(shí)出現(xiàn)索引和名稱。

df.ix[1:3,['a','b']]
Out[41]:
 a b
1 6 8
2 12 14
3 18 20

In [42]: df.ix[[1,3,5],['a','b']]
Out[42]:
 a b
1 6 8
3 18 20
5 30 32

In [45]: df.ix[[1,3,5],[0,2]]
Out[45]:
 a c
1 6 10
3 18 22
5 30 34

e. at函數(shù)

根據(jù)指定行index及列l(wèi)abel,快速定位DataFrame的元素,選擇列時(shí)僅支持列名。

In [46]: df.at[3,'a']
Out[46]: 18

f. iat函數(shù)

與at的功能相同,只使用索引參數(shù)

In [49]: df.iat[3,0]
Out[49]: 18

2. csv操作

csv文件內(nèi)容

Supplier Name,Invoice Number,Part Number,Cost,Purchase Date
Supplier X,001-1001,2341,$500.00 ,1/20/14
Supplier X,001-1001,2341,$500.00 ,1/20/14
Supplier X,001-1001,5467,$750.00 ,1/20/14
Supplier X,001-1001,5467,$750.00 ,1/20/14
Supplier Y,50-9501,7009,$250.00 ,1/30/14
Supplier Y,50-9501,7009,$250.00 ,1/30/14
Supplier Y,50-9505,6650,$125.00 ,2002/3/14
Supplier Y,50-9505,6650,$125.00 ,2002/3/14
Supplier Z,920-4803,3321,$615.00 ,2002/3/14
Supplier Z,920-4804,3321,$615.00 ,2002/10/14
Supplier Z,920-4805,3321,$615.00 ,2/17/14
Supplier Z,920-4806,3321,$615.00 ,2/24/14

(1)csv文件讀寫

關(guān)于read_csv函數(shù)中的參數(shù)說(shuō)明參考博客:http://www.dbjr.com.cn/article/164445.htm

import pandas as pd

# 讀寫csv文件
df = pd.read_csv("supplier_data.csv")
df.to_csv("supplier_data_write.csv",index=None)

(2)篩選特定的行

#Supplier Nmae列中姓名包含'Z',或者Cost列中的值大于600
print(df[df["Supplier Name"].str.contains('Z')])
print(df[df['Cost'].str.strip('$').astype(float) > 600])
print(df.loc[(df["Supplier Name"].str.contains('Z'))|(df['Cost'].str.strip('$').astype(float) > 600.0),:])

#行中的值屬于某個(gè)集合
li = [2341,6650]
print(df[df['Part Number'].isin(li)])
print(df.loc[df['Part Number'].astype(int).isin(li),:])

#行中的值匹配某個(gè)模式
print(df[df['Invoice Number'].str.startswith("001-")])

 (3)選取特定的列

#選取特定的列
#列索引值,打印1,3列
print(df.iloc[:,1:4:2])
#列標(biāo)題打印
print(df.loc[:,["Invoice Number", "Part Number"]])
#選取連續(xù)的行
print(df.loc[1:4,:])

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

最新評(píng)論