欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python實現(xiàn)beta分布概率密度函數(shù)的方法

 更新時間:2019年07月08日 10:39:55   作者:aespresso  
今天小編就為大家分享一篇python實現(xiàn)beta分布概率密度函數(shù)的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧

如下所示:

beta分布的最大特點是其多樣性, 從下圖可以看出, beta分布具有各種形態(tài), 有U形, 類似正態(tài)分布的形狀, 類似uniform分布的形狀等, 正式這一特質(zhì)使beta分布在共軛先驗的計算中起到重要作用:

import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
from matplotlib import style
style.use('ggplot')
params = [0.5, 1, 2, 3]
x = np.linspace(0, 1, 100)
f, ax = plt.subplots(len(params), len(params), sharex=True, sharey=True)
for i in range(4):
  for j in range(4):
    alpha = params[i]
    beta = params[j]
    pdf = stats.beta(alpha, beta).pdf(x)
    ax[i, j].plot(x, pdf)
    ax[i, j].plot(0, 0, label='alpha={:3.2f}\nbeta={:3.2f}'.format(alpha, beta), alpha=0)
    plt.setp(ax[i, j], xticks=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0], yticks=[0,2,4,6,8,10])
    ax[i, j].legend(fontsize=10)
ax[3, 0].set_xlabel('theta', fontsize=16)
ax[0, 0].set_ylabel('pdf(theta)', fontsize=16)
plt.suptitle('Beta PDF', fontsize=16)
plt.tight_layout()
plt.show()

以上這篇python實現(xiàn)beta分布概率密度函數(shù)的方法就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。

相關文章

最新評論