詳解python實現(xiàn)小波變換的一個簡單例子
最近工作需要,看了一下小波變換方面的東西,用python實現(xiàn)了一個簡單的小波變換類,將來可以用在工作中。
簡單說幾句原理,小波變換類似于傅里葉變換,都是把函數(shù)用一組正交基函數(shù)展開,選取不同的基函數(shù)給出不同的變換。例如傅里葉變換,選擇的是sin和cos,或者exp(ikx)這種復指數(shù)函數(shù);而小波變換,選取基函數(shù)的方式更加靈活,可以根據(jù)要處理的數(shù)據(jù)的特點(比如某一段上信息量比較多),在不同尺度上采用不同的頻寬來對已知信號進行分解,從而盡可能保留多一點信息,同時又避免了原始傅里葉變換的大計算量。以下計算采用的是haar基,它把函數(shù)分為2段(A1和B1,但第一次不分),對第一段內(nèi)相鄰的2個采樣點進行變換(只考慮A1),變換矩陣為
sqrt(0.5) sqrt(0.5)
sqrt(0.5) -sqrt(0.5)
變換完之后,再把第一段(A1)分為兩段,同樣對相鄰的點進行變換,直到無法再分。
下面直接上代碼
Wavelet.py
import math
class wave:
def __init__(self):
M_SQRT1_2 = math.sqrt(0.5)
self.h1 = [M_SQRT1_2, M_SQRT1_2]
self.g1 = [M_SQRT1_2, -M_SQRT1_2]
self.h2 = [M_SQRT1_2, M_SQRT1_2]
self.g2 = [M_SQRT1_2, -M_SQRT1_2]
self.nc = 2
self.offset = 0
def __del__(self):
return
class Wavelet:
def __init__(self, n):
self._haar_centered_Init()
self._scratch = []
for i in range(0,n):
self._scratch.append(0.0)
return
def __del__(self):
return
def transform_inverse(self, list, stride):
self._wavelet_transform(list, stride, -1)
return
def transform_forward(self, list, stride):
self._wavelet_transform(list, stride, 1)
return
def _haarInit(self):
self._wave = wave()
self._wave.offset = 0
return
def _haar_centered_Init(self):
self._wave = wave()
self._wave.offset = 1
return
def _wavelet_transform(self, list, stride, dir):
n = len(list)
if (len(self._scratch) < n):
print("not enough workspace provided")
exit()
if (not self._ispower2(n)):
print("the list size is not a power of 2")
exit()
if (n < 2):
return
if (dir == 1): # 正變換
i = n
while(i >= 2):
self._step(list, stride, i, dir)
i = i>>1
if (dir == -1): # 逆變換
i = 2
while(i <= n):
self._step(list, stride, i, dir)
i = i << 1
return
def _ispower2(self, n):
power = math.log(n,2)
intpow = int(power)
intn = math.pow(2,intpow)
if (abs(n - intn) > 1e-6):
return False
else:
return True
def _step(self, list, stride, n, dir):
for i in range(0, len(self._scratch)):
self._scratch[i] = 0.0
nmod = self._wave.nc * n
nmod -= self._wave.offset
n1 = n - 1
nh = n >> 1
if (dir == 1): # 正變換
ii = 0
i = 0
while (i < n):
h = 0
g = 0
ni = i + nmod
for k in range(0, self._wave.nc):
jf = n1 & (ni + k)
h += self._wave.h1[k] * list[stride*jf]
g += self._wave.g1[k] * list[stride*jf]
self._scratch[ii] += h
self._scratch[ii + nh] += g
i += 2
ii += 1
if (dir == -1): # 逆變換
ii = 0
i = 0
while (i < n):
ai = list[stride*ii]
ai1 = list[stride*(ii+nh)]
ni = i + nmod
for k in range(0, self._wave.nc):
jf = n1 & (ni + k)
self._scratch[jf] += self._wave.h2[k] * ai + self._wave.g2[k] * ai1
i += 2
ii += 1
for i in range(0, n):
list[stride*i] = self._scratch[i]
測試代碼如下:
test.py
import math
import Wavelet
waveletn = 256
waveletnc = 20 #保留的分量數(shù)
wavelettest = Wavelet.Wavelet(waveletn)
waveletorigindata = []
waveletdata = []
for i in range(0, waveletn):
waveletorigindata.append(math.sin(i)*math.exp(-math.pow((i-100)/50,2))+1)
waveletdata.append(waveletorigindata[-1])
Wavelet.wavelettest.transform_forward(waveletdata, 1)
newdata = sorted(waveletdata, key = lambda ele: abs(ele), reverse=True)
for i in range(waveletnc, waveletn): # 篩選出前 waveletnc個分量保留
for j in range(0, waveletn):
if (abs(newdata[i] - waveletdata[j]) < 1e-6):
waveletdata[j] = 0.0
break
Wavelet.wavelettest.transform_inverse(waveletdata, 1)
waveleterr = 0.0
for i in range(0, waveletn):
print(waveletorigindata[i], ",", waveletdata[i])
waveleterr += abs(waveletorigindata[i] - waveletdata[i])/abs(waveletorigindata[i])
print("error: ", waveleterr/waveletn)
當waveletnc = 20時,可得到下圖,誤差大約為2.1

當waveletnc = 100時,則為下圖,誤差大約為0.04

當waveletnc = 200時,得到下圖,誤差大約為0.0005

以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關文章
淺談flask截獲所有訪問及before/after_request修飾器
這篇文章主要介紹了淺談flask截獲所有訪問及before/after_request修飾器,具有一定借鑒價值,需要的朋友可以參考下2018-01-01
Python圖像處理之目標物體輪廓提取的實現(xiàn)方法
目標物體的輪廓實質(zhì)是指一系列像素點構成,這些點構成了一個有序的點集,這篇文章主要給大家介紹了關于Python圖像處理之目標物體輪廓提取的實現(xiàn)方法,需要的朋友可以參考下2021-08-08
matplotlib 范圍選區(qū)(SpanSelector)的使用
這篇文章主要介紹了matplotlib 范圍選區(qū)(SpanSelector)的使用,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2021-02-02

