詳解如何用TensorFlow訓練和識別/分類自定義圖片
很多正在入門或剛?cè)腴TTensorFlow機器學習的同學希望能夠通過自己指定圖片源對模型進行訓練,然后識別和分類自己指定的圖片。但是,在TensorFlow官方入門教程中,并無明確給出如何把自定義數(shù)據(jù)輸入訓練模型的方法?,F(xiàn)在,我們就參考官方入門課程《Deep MNIST for Experts》一節(jié)的內(nèi)容(傳送門:https://www.tensorflow.org/get_started/mnist/pros),介紹如何將自定義圖片輸入到TensorFlow的訓練模型。
在《Deep MNISTfor Experts》一節(jié)的代碼中,程序?qū)ensorFlow自帶的mnist圖片數(shù)據(jù)集mnist.train.images作為訓練輸入,將mnist.test.images作為驗證輸入。當學習了該節(jié)內(nèi)容后,我們會驚嘆卷積神經(jīng)網(wǎng)絡的超高識別率,但對于剛開始學習TensorFlow的同學,內(nèi)心可能會產(chǎn)生一個問號:如何將mnist數(shù)據(jù)集替換為自己指定的圖片源?譬如,我要將圖片源改為自己C盤里面的圖片,應該怎么調(diào)整代碼?
我們先看下該節(jié)課程中涉及到mnist圖片調(diào)用的代碼:
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) batch = mnist.train.next_batch(50) train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print('test accuracy %g' % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
對于剛接觸TensorFlow的同學,要修改上述代碼,可能會較為吃力。我也是經(jīng)過一番摸索,才成功調(diào)用自己的圖片集。
要實現(xiàn)輸入自定義圖片,需要自己先準備好一套圖片集。為節(jié)省時間,我們把mnist的手寫體數(shù)字集一張一張地解析出來,存放到自己的本地硬盤,保存為bmp格式,然后再把本地硬盤的手寫體圖片一張一張地讀取出來,組成集合,再輸入神經(jīng)網(wǎng)絡。mnist手寫體數(shù)字集的提取方式詳見《如何從TensorFlow的mnist數(shù)據(jù)集導出手寫體數(shù)字圖片》。
將mnist手寫體數(shù)字集導出圖片到本地后,就可以仿照以下python代碼,實現(xiàn)自定義圖片的訓練:
#!/usr/bin/python3.5 # -*- coding: utf-8 -*- import os import numpy as np import tensorflow as tf from PIL import Image # 第一次遍歷圖片目錄是為了獲取圖片總數(shù) input_count = 0 for i in range(0,10): dir = './custom_images/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類標簽 for rt, dirs, files in os.walk(dir): for filename in files: input_count += 1 # 定義對應維數(shù)和各維長度的數(shù)組 input_images = np.array([[0]*784 for i in range(input_count)]) input_labels = np.array([[0]*10 for i in range(input_count)]) # 第二次遍歷圖片目錄是為了生成圖片數(shù)據(jù)和標簽 index = 0 for i in range(0,10): dir = './custom_images/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類標簽 for rt, dirs, files in os.walk(dir): for filename in files: filename = dir + filename img = Image.open(filename) width = img.size[0] height = img.size[1] for h in range(0, height): for w in range(0, width): # 通過這樣的處理,使數(shù)字的線條變細,有利于提高識別準確率 if img.getpixel((w, h)) > 230: input_images[index][w+h*width] = 0 else: input_images[index][w+h*width] = 1 input_labels[index][i] = 1 index += 1 # 定義輸入節(jié)點,對應于圖片像素值矩陣集合和圖片標簽(即所代表的數(shù)字) x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder(tf.float32, shape=[None, 10]) x_image = tf.reshape(x, [-1, 28, 28, 1]) # 定義第一個卷積層的variables和ops W_conv1 = tf.Variable(tf.truncated_normal([7, 7, 1, 32], stddev=0.1)) b_conv1 = tf.Variable(tf.constant(0.1, shape=[32])) L1_conv = tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME') L1_relu = tf.nn.relu(L1_conv + b_conv1) L1_pool = tf.nn.max_pool(L1_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 定義第二個卷積層的variables和ops W_conv2 = tf.Variable(tf.truncated_normal([3, 3, 32, 64], stddev=0.1)) b_conv2 = tf.Variable(tf.constant(0.1, shape=[64])) L2_conv = tf.nn.conv2d(L1_pool, W_conv2, strides=[1, 1, 1, 1], padding='SAME') L2_relu = tf.nn.relu(L2_conv + b_conv2) L2_pool = tf.nn.max_pool(L2_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 全連接層 W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1)) b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024])) h_pool2_flat = tf.reshape(L2_pool, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # dropout keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # readout層 W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1)) b_fc2 = tf.Variable(tf.constant(0.1, shape=[10])) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 # 定義優(yōu)化器和訓練op cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print ("一共讀取了 %s 個輸入圖像, %s 個標簽" % (input_count, input_count)) # 設置每次訓練op的輸入個數(shù)和迭代次數(shù),這里為了支持任意圖片總數(shù),定義了一個余數(shù)remainder,譬如,如果每次訓練op的輸入個數(shù)為60,圖片總數(shù)為150張,則前面兩次各輸入60張,最后一次輸入30張(余數(shù)30) batch_size = 60 iterations = 100 batches_count = int(input_count / batch_size) remainder = input_count % batch_size print ("數(shù)據(jù)集分成 %s 批, 前面每批 %s 個數(shù)據(jù),最后一批 %s 個數(shù)據(jù)" % (batches_count+1, batch_size, remainder)) # 執(zhí)行訓練迭代 for it in range(iterations): # 這里的關鍵是要把輸入數(shù)組轉(zhuǎn)為np.array for n in range(batches_count): train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5}) if remainder > 0: start_index = batches_count * batch_size; train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5}) # 每完成五次迭代,判斷準確度是否已達到100%,達到則退出迭代循環(huán) iterate_accuracy = 0 if it%5 == 0: iterate_accuracy = accuracy.eval(feed_dict={x: input_images, y_: input_labels, keep_prob: 1.0}) print ('iteration %d: accuracy %s' % (it, iterate_accuracy)) if iterate_accuracy >= 1: break; print ('完成訓練!')
上述python代碼的執(zhí)行結(jié)果截圖如下:
對于上述代碼中與模型構(gòu)建相關的代碼,請查閱官方《Deep MNIST for Experts》一節(jié)的內(nèi)容進行理解。在本文中,需要重點掌握的是如何將本地圖片源整合成為feed_dict可接受的格式。其中最關鍵的是這兩行:
# 定義對應維數(shù)和各維長度的數(shù)組 input_images = np.array([[0]*784 for i in range(input_count)]) input_labels = np.array([[0]*10 for i in range(input_count)])
它們對應于feed_dict的兩個placeholder:
x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder(tf.float32, shape=[None, 10])
這樣一看,是不是很簡單?
我們將在下一篇博文中介紹如何通過本文成果識別車牌數(shù)字。
以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
- TensorFlow卷積神經(jīng)網(wǎng)絡之使用訓練好的模型識別貓狗圖片
- 如何使用C#將Tensorflow訓練的.pb文件用在生產(chǎn)環(huán)境詳解
- Tensorflow加載預訓練模型和保存模型的實例
- Tensorflow 訓練自己的數(shù)據(jù)集將數(shù)據(jù)直接導入到內(nèi)存
- TensorFlow實現(xiàn)隨機訓練和批量訓練的方法
- tensorflow學習筆記之簡單的神經(jīng)網(wǎng)絡訓練和測試
- 利用TensorFlow訓練簡單的二分類神經(jīng)網(wǎng)絡模型的方法
- tensorflow入門之訓練簡單的神經(jīng)網(wǎng)絡方法
- tensorflow訓練中出現(xiàn)nan問題的解決
- 詳解tensorflow訓練自己的數(shù)據(jù)集實現(xiàn)CNN圖像分類
相關文章
python調(diào)用機器喇叭發(fā)出蜂鳴聲(Beep)的方法
這篇文章主要介紹了python調(diào)用機器喇叭發(fā)出蜂鳴聲(Beep)的方法,實例分析了Python調(diào)用winsound模塊的使用技巧,需要的朋友可以參考下2015-03-03解決python中遇到字典里key值為None的情況,取不出來的問題
今天小編就為大家分享一篇解決python中遇到字典里key值為None的情況,取不出來的問題,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-10-10Python+Delorean實現(xiàn)時間格式智能轉(zhuǎn)換
DeLorean是一個Python的第三方模塊,基于?pytz?和?dateutil?開發(fā),用于處理Python中日期時間的格式轉(zhuǎn)換。本文將詳細講講DeLorean的使用,感興趣的可以了解一下2022-04-04OpenCV之理解KNN鄰近算法k-Nearest?Neighbour
這篇文章主要為大家介紹了OpenCV之理解KNN鄰近算法k-Nearest?Neighbour,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2023-05-05