python實現(xiàn)知乎高顏值圖片爬取
更新時間:2019年08月12日 14:18:52 作者:Leslie-x
這篇文章主要介紹了python實現(xiàn)知乎高顏值圖片爬取,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友可以參考下
導入相關(guān)包
import time import pydash import base64 import requests from lxml import etree from aip import AipFace from pathlib import Path
百度云 人臉檢測 申請信息
#唯一必須填的信息就這三行 APP_ID = "xxxxxxxx" API_KEY = "xxxxxxxxxxxxxxxx" SECRET_KEY = "xxxxxxxxxxxxxxxx" # 過濾顏值閾值,存儲空間大的請隨意 BEAUTY_THRESHOLD = 55 AUTHORIZATION = "oauth c3cef7c66a1843f8b3a9e6a1e3160e20" # 如果權(quán)限錯誤,瀏覽器中打開知乎,在開發(fā)者工具復制一個,無需登錄 # 建議最好換一個,因為不知道知乎的反爬蟲策略,如果太多人用同一個,可能會影響程序運行
以下皆無需改動
# 每次請求知乎的討論列表長度,不建議設(shè)定太長,注意節(jié)操 LIMIT = 5 # 這是話題『美女』的 ID,其是『顏值』(20013528)的父話題 SOURCE = "19552207"
爬蟲假裝下正常瀏覽器請求
USER_AGENT = "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/534.55.3 (KHTML, like Gecko) Version/5.1.5 Safari/534.55.3"
REFERER = "https://www.zhihu.com/topic/%s/newest" % SOURCE
# 某話題下討論列表請求 url
BASE_URL = "https://www.zhihu.com/api/v4/topics/%s/feeds/timeline_activity"
# 初始請求 url 附帶的請求參數(shù)
URL_QUERY = "?include=data%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer%29%5D.target.content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer%29%5D.target.is_normal%2Ccomment_count%2Cvoteup_count%2Ccontent%2Crelevant_info%2Cexcerpt.author.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Darticle%29%5D.target.content%2Cvoteup_count%2Ccomment_count%2Cvoting%2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Dpeople%29%5D.target.answer_count%2Carticles_count%2Cgender%2Cfollower_count%2Cis_followed%2Cis_following%2Cbadge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Danswer%29%5D.target.content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%3F%28target.type%3Danswer%29%5D.target.author.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Darticle%29%5D.target.content%2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dquestion%29%5D.target.comment_count&limit=" + str(
LIMIT)
HEADERS = {
"User-Agent": USER_AGENT,
"Referer": REFERER,
"authorization": AUTHORIZATION
指定 url,獲取對應原始內(nèi)容 / 圖片
def fetch_image(url):
try:
response = requests.get(url, headers=HEADERS)
except Exception as e:
raise e
return response.content
指定 url,獲取對應 JSON 返回 / 話題列表
def fetch_activities(url):
try:
response = requests.get(url, headers=HEADERS)
except Exception as e:
raise e
return response.json()
處理返回的話題列表
def parser_activities(datums, face_detective):
for data in datums["data"]:
target = data["target"]
if "content" not in target or "question" not in target or "author" not in target:
continue
html = etree.HTML(target["content"])
seq = 0
title = target["question"]["title"]
author = target["author"]["name"]
images = html.xpath("http://img/@src")
for image in images:
if not image.startswith("http"):
continue
image_data = fetch_image(image)
score = face_detective(image_data)
if not score:
continue
name = "{}--{}--{}--{}.jpg".format(score, author, title, seq)
seq = seq + 1
path = Path(__file__).parent.joinpath("image").joinpath(name)
try:
f = open(path, "wb")
f.write(image_data)
f.flush()
f.close()
print(path)
time.sleep(2)
except Exception as e:
continue
if not datums["paging"]["is_end"]:
return datums["paging"]["next"]
else:
return None
初始化顏值檢測工具
def init_detective(app_id, api_key, secret_key):
client = AipFace(app_id, api_key, secret_key)
options = {"face_field": "age,gender,beauty,qualities"}
def detective(image):
image = str(base64.b64encode(image), "utf-8")
response = client.detect(str(image), "BASE64", options)
response = response.get("result")
if not response:
return
if (not response) or (response["face_num"] == 0):
return
face_list = response["face_list"]
if pydash.get(face_list, "0.face_probability") < 0.6:
return
if pydash.get(face_list, "0.beauty") < BEAUTY_THRESHOLD:
return
if pydash.get(face_list, "0.gender.type") != "female":
return
score = pydash.get(face_list, "0.beauty")
return score
return detective
程序入口
def main():
face_detective = init_detective(APP_ID, API_KEY, SECRET_KEY)
url = BASE_URL % SOURCE + URL_QUERY
while url is not None:
datums = fetch_activities(url)
url = parser_activities(datums, face_detective)
time.sleep(5)
if __name__ == '__main__':
main()
以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Python語音合成的項目實戰(zhàn)(PyQt5+pyttsx3)
本文主要介紹了Python語音合成的項目實戰(zhàn)(PyQt5+pyttsx3),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2023-02-02
利用python實現(xiàn)平穩(wěn)時間序列的建模方式
這篇文章主要介紹了利用python實現(xiàn)平穩(wěn)時間序列的建模方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-06-06
python神經(jīng)網(wǎng)絡學習數(shù)據(jù)增強及預處理示例詳解
這篇文章主要為大家介紹了python神經(jīng)網(wǎng)絡學習數(shù)據(jù)增強及預處理示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2022-05-05
Python實戰(zhàn)之OpenCV實現(xiàn)貓臉檢測
今天給大家?guī)淼氖顷P(guān)于Python的相關(guān)知識,文章圍繞著OpenCV實現(xiàn)貓臉檢測展開,文中有非常詳細的介紹及代碼示例,需要的朋友可以參考下2021-06-06

