基于Python的圖像數據增強Data Augmentation解析
1.1 簡介
深層神經網絡一般都需要大量的訓練數據才能獲得比較理想的結果。在數據量有限的情況下,可以通過數據增強(Data Augmentation)來增加訓練樣本的多樣性, 提高模型魯棒性,避免過擬合。
在計算機視覺中,典型的數據增強方法有翻轉(Flip),旋轉(Rotat ),縮放(Scale),隨機裁剪或補零(Random Crop or Pad),色彩抖動(Color jittering),加噪聲(Noise)
筆者在跟進視頻及圖像中的人體姿態(tài)檢測和關鍵點追蹤(Human Pose Estimatiion and Tracking in videos)的項目。因此本文的數據增強僅使用——翻轉(Flip),旋轉(Rotate ),縮放以及縮放(Scale)
2.1 裁剪(Crop)
- image.shape--([3, width, height])一個視頻序列中的一幀圖片,裁剪前大小不統(tǒng)一
- bbox.shape--([4,])人體檢測框,用于裁剪
- x.shape--([1,13]) 人體13個關鍵點的所有x坐標值
- y.shape--([1,13])人體13個關鍵點的所有y坐標值
def crop(image, bbox, x, y, length):
x, y, bbox = x.astype(np.int), y.astype(np.int), bbox.astype(np.int)
x_min, y_min, x_max, y_max = bbox
w, h = x_max - x_min, y_max - y_min
# Crop image to bbox
image = image[y_min:y_min + h, x_min:x_min + w, :]
# Crop joints and bbox
x -= x_min
y -= y_min
bbox = np.array([0, 0, x_max - x_min, y_max - y_min])
# Scale to desired size
side_length = max(w, h)
f_xy = float(length) / float(side_length)
image, bbox, x, y = Transformer.scale(image, bbox, x, y, f_xy)
# Pad
new_w, new_h = image.shape[1], image.shape[0]
cropped = np.zeros((length, length, image.shape[2]))
dx = length - new_w
dy = length - new_h
x_min, y_min = int(dx / 2.), int(dy / 2.)
x_max, y_max = x_min + new_w, y_min + new_h
cropped[y_min:y_max, x_min:x_max, :] = image
x += x_min
y += y_min
x = np.clip(x, x_min, x_max)
y = np.clip(y, y_min, y_max)
bbox += np.array([x_min, y_min, x_min, y_min])
return cropped, bbox, x.astype(np.int), y.astype(np.int)
2.2 縮放(Scale)
- image.shape--([3, 256, 256])一個視頻序列中的一幀圖片,裁剪后輸入網絡為256*256
- bbox.shape--([4,])人體檢測框,用于裁剪
- x.shape--([1,13]) 人體13個關鍵點的所有x坐標值
- y.shape--([1,13])人體13個關鍵點的所有y坐標值
- f_xy--縮放倍數
def scale(image, bbox, x, y, f_xy):
(h, w, _) = image.shape
h, w = int(h * f_xy), int(w * f_xy)
image = resize(image, (h, w), preserve_range=True, anti_aliasing=True, mode='constant').astype(np.uint8)
x = x * f_xy
y = y * f_xy
bbox = bbox * f_xy
x = np.clip(x, 0, w)
y = np.clip(y, 0, h)
return image, bbox, x, y
2.3 翻轉(fillip)
這里是將圖片圍繞對稱軸進行左右翻轉(因為人體是左右對稱的,在關鍵點檢測中有助于防止模型過擬合)
def flip(image, bbox, x, y):
image = np.fliplr(image).copy()
w = image.shape[1]
x_min, y_min, x_max, y_max = bbox
bbox = np.array([w - x_max, y_min, w - x_min, y_max])
x = w - x
x, y = Transformer.swap_joints(x, y)
return image, bbox, x, y
翻轉前:

翻轉后:

2.4 旋轉(rotate)
angle--旋轉角度
def rotate(image, bbox, x, y, angle):
# image - -(256, 256, 3)
# bbox - -(4,)
# x - -[126 129 124 117 107 99 128 107 108 105 137 155 122 99]
# y - -[209 176 136 123 178 225 65 47 46 24 44 64 49 54]
# angle - --8.165648811999333
# center of image [128,128]
o_x, o_y = (np.array(image.shape[:2][::-1]) - 1) / 2.
width,height = image.shape[0],image.shape[1]
x1 = x
y1 = height - y
o_x = o_x
o_y = height - o_y
image = rotate(image, angle, preserve_range=True).astype(np.uint8)
r_x, r_y = o_x, o_y
angle_rad = (np.pi * angle) /180.0
x = r_x + np.cos(angle_rad) * (x1 - o_x) - np.sin(angle_rad) * (y1 - o_y)
y = r_y + np.sin(angle_rad) * (x1 - o_x) + np.cos(angle_rad) * (y1 - o_y)
x = x
y = height - y
bbox[0] = r_x + np.cos(angle_rad) * (bbox[0] - o_x) + np.sin(angle_rad) * (bbox[1] - o_y)
bbox[1] = r_y + -np.sin(angle_rad) * (bbox[0] - o_x) + np.cos(angle_rad) * (bbox[1] - o_y)
bbox[2] = r_x + np.cos(angle_rad) * (bbox[2] - o_x) + np.sin(angle_rad) * (bbox[3] - o_y)
bbox[3] = r_y + -np.sin(angle_rad) * (bbox[2] - o_x) + np.cos(angle_rad) * (bbox[3] - o_y)
return image, bbox, x.astype(np.int), y.astype(np.int)
旋轉前:

旋轉后:

3 結果(output)
數據增強前的原圖:

數據增強后:

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關文章
python實現(xiàn)動態(tài)GIF英數驗證碼識別示例
這篇文章主要為大家介紹了python實現(xiàn)動態(tài)GIF英數驗證碼識別示例,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2024-01-01
python使用selenium實現(xiàn)批量文件下載
這篇文章主要介紹了python使用selenium實現(xiàn)批量文件下載,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2019-03-03
python 實現(xiàn)網易郵箱郵件閱讀和刪除的輔助小腳本
這篇文章主要介紹了python 如何實現(xiàn)網易郵箱郵件閱讀和刪除輔助的小腳本,幫助大家更好的理解和學習使用python,感興趣的朋友可以了解下2021-03-03

