欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

用Pytorch訓(xùn)練CNN(數(shù)據(jù)集MNIST,使用GPU的方法)

 更新時(shí)間:2019年08月19日 18:21:21   作者:qq_32464407  
今天小編就為大家分享一篇用Pytorch訓(xùn)練CNN(數(shù)據(jù)集MNIST,使用GPU的方法),具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧

聽(tīng)說(shuō)pytorch使用比TensorFlow簡(jiǎn)單,加之pytorch現(xiàn)已支持windows,所以今天裝了pytorch玩玩,第一件事還是寫了個(gè)簡(jiǎn)單的CNN在MNIST上實(shí)驗(yàn),初步體驗(yàn)的確比TensorFlow方便。

參考代碼(在莫煩python的教程代碼基礎(chǔ)上修改)如下:

import torch 
import torch.nn as nn 
from torch.autograd import Variable 
import torch.utils.data as Data 
import torchvision 
import time
#import matplotlib.pyplot as plt 
 
torch.manual_seed(1) 
 
EPOCH = 1 
BATCH_SIZE = 50 
LR = 0.001 
DOWNLOAD_MNIST = False 
if_use_gpu = 1
 
# 獲取訓(xùn)練集dataset 
training_data = torchvision.datasets.MNIST( 
       root='./mnist/', # dataset存儲(chǔ)路徑 
       train=True, # True表示是train訓(xùn)練集,F(xiàn)alse表示test測(cè)試集 
       transform=torchvision.transforms.ToTensor(), # 將原數(shù)據(jù)規(guī)范化到(0,1)區(qū)間 
       download=DOWNLOAD_MNIST, 
       ) 
 
# 打印MNIST數(shù)據(jù)集的訓(xùn)練集及測(cè)試集的尺寸 
print(training_data.train_data.size()) 
print(training_data.train_labels.size()) 
# torch.Size([60000, 28, 28]) 
# torch.Size([60000]) 
 
#plt.imshow(training_data.train_data[0].numpy(), cmap='gray') 
#plt.title('%i' % training_data.train_labels[0]) 
#plt.show() 
 
# 通過(guò)torchvision.datasets獲取的dataset格式可直接可置于DataLoader 
train_loader = Data.DataLoader(dataset=training_data, batch_size=BATCH_SIZE, 
                shuffle=True) 
 
# 獲取測(cè)試集dataset 

test_data = torchvision.datasets.MNIST( 
       root='./mnist/', # dataset存儲(chǔ)路徑 
       train=False, # True表示是train訓(xùn)練集,F(xiàn)alse表示test測(cè)試集 
       transform=torchvision.transforms.ToTensor(), # 將原數(shù)據(jù)規(guī)范化到(0,1)區(qū)間 
       download=DOWNLOAD_MNIST, 
       ) 
# 取前全部10000個(gè)測(cè)試集樣本 
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1).float(), requires_grad=False)
#test_x = test_x.cuda()
## (~, 28, 28) to (~, 1, 28, 28), in range(0,1) 
test_y = test_data.test_labels
#test_y = test_y.cuda() 
class CNN(nn.Module): 
  def __init__(self): 
    super(CNN, self).__init__() 
    self.conv1 = nn.Sequential( # (1,28,28) 
           nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, 
                stride=1, padding=2), # (16,28,28) 
    # 想要con2d卷積出來(lái)的圖片尺寸沒(méi)有變化, padding=(kernel_size-1)/2 
           nn.ReLU(), 
           nn.MaxPool2d(kernel_size=2) # (16,14,14) 
           ) 
    self.conv2 = nn.Sequential( # (16,14,14) 
           nn.Conv2d(16, 32, 5, 1, 2), # (32,14,14) 
           nn.ReLU(), 
           nn.MaxPool2d(2) # (32,7,7) 
           ) 
    self.out = nn.Linear(32*7*7, 10) 
 
  def forward(self, x): 
    x = self.conv1(x) 
    x = self.conv2(x) 
    x = x.view(x.size(0), -1) # 將(batch,32,7,7)展平為(batch,32*7*7) 
    output = self.out(x) 
    return output 
 
cnn = CNN() 
if if_use_gpu:
  cnn = cnn.cuda()

optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) 
loss_function = nn.CrossEntropyLoss() 
 


for epoch in range(EPOCH): 
  start = time.time() 
  for step, (x, y) in enumerate(train_loader): 
    b_x = Variable(x, requires_grad=False) 
    b_y = Variable(y, requires_grad=False) 
    if if_use_gpu:
      b_x = b_x.cuda()
      b_y = b_y.cuda()
 
    output = cnn(b_x) 
    loss = loss_function(output, b_y) 
    optimizer.zero_grad() 
    loss.backward() 
    optimizer.step() 
 
    if step % 100 == 0: 
      print('Epoch:', epoch, '|Step:', step, 
         '|train loss:%.4f'%loss.data[0]) 
  duration = time.time() - start 
  print('Training duation: %.4f'%duration)
  
cnn = cnn.cpu()
test_output = cnn(test_x) 
pred_y = torch.max(test_output, 1)[1].data.squeeze()
accuracy = sum(pred_y == test_y) / test_y.size(0) 
print('Test Acc: %.4f'%accuracy)

以上這篇用Pytorch訓(xùn)練CNN(數(shù)據(jù)集MNIST,使用GPU的方法)就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

相關(guān)文章

  • 解決python tkinter界面卡死的問(wèn)題

    解決python tkinter界面卡死的問(wèn)題

    今天小編就為大家分享一篇解決python tkinter界面卡死的問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2019-07-07
  • Python中使用pprint函數(shù)進(jìn)行格式化輸出的教程

    Python中使用pprint函數(shù)進(jìn)行格式化輸出的教程

    這篇文章主要介紹了Python中使用pprint函數(shù)進(jìn)行格式化輸出的教程,包括能夠控制輸出寬度等非常有用的特性,需要的朋友可以參考下
    2015-04-04
  • 深入解析python中的實(shí)例方法、類方法和靜態(tài)方法

    深入解析python中的實(shí)例方法、類方法和靜態(tài)方法

    這篇文章主要介紹了python中的實(shí)例方法、類方法和靜態(tài)方法,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2019-03-03
  • 手把手教你安裝Windows版本的Tensorflow

    手把手教你安裝Windows版本的Tensorflow

    這篇文章主要介紹了手把手教你安裝Windows版本的Tensorflow,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2020-03-03
  • Django利用AJAX技術(shù)實(shí)現(xiàn)博文實(shí)時(shí)搜索

    Django利用AJAX技術(shù)實(shí)現(xiàn)博文實(shí)時(shí)搜索

    這篇文章主要介紹了Django如何利用AJAX技術(shù)實(shí)現(xiàn)博文實(shí)時(shí)搜索,幫助大家更好的理解和學(xué)習(xí)使用Django框架,感興趣的朋友可以了解下
    2021-05-05
  • 淺析Python中的套接字編程

    淺析Python中的套接字編程

    不可否認(rèn),互聯(lián)網(wǎng)已成為“存在之魂”,其活動(dòng)以“連接”或“網(wǎng)絡(luò)”為特征。使用套接字的最關(guān)鍵的基礎(chǔ)之一,使這些網(wǎng)絡(luò)成為可能。本文涵蓋了有關(guān)使用Python進(jìn)行套接字編程的所有領(lǐng)域。套接字可以幫助您建立這些連接,而Python無(wú)疑可以簡(jiǎn)化連接
    2021-06-06
  • tensorflow通過(guò)模型文件,使用tensorboard查看其模型圖Graph方式

    tensorflow通過(guò)模型文件,使用tensorboard查看其模型圖Graph方式

    今天小編就為大家分享一篇tensorflow通過(guò)模型文件,使用tensorboard查看其模型圖Graph方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2020-01-01
  • Python之Scrapy爬蟲框架安裝及簡(jiǎn)單使用詳解

    Python之Scrapy爬蟲框架安裝及簡(jiǎn)單使用詳解

    這篇文章主要介紹了Python之Scrapy爬蟲框架安裝及簡(jiǎn)單使用詳解,小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧
    2017-12-12
  • keras 兩種訓(xùn)練模型方式詳解fit和fit_generator(節(jié)省內(nèi)存)

    keras 兩種訓(xùn)練模型方式詳解fit和fit_generator(節(jié)省內(nèi)存)

    這篇文章主要介紹了keras 兩種訓(xùn)練模型方式詳解fit和fit_generator(節(jié)省內(nèi)存),具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2020-07-07
  • python實(shí)現(xiàn)word/excel/ppt批量轉(zhuǎn)pdf的示例代碼

    python實(shí)現(xiàn)word/excel/ppt批量轉(zhuǎn)pdf的示例代碼

    這篇文章主要為大家詳細(xì)介紹了如何利用python實(shí)現(xiàn)word、excel、ppt批量轉(zhuǎn)pdf文件,文中的示例代碼講解詳細(xì),有需要的小伙伴可以參考下
    2023-09-09

最新評(píng)論