欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python中的相關分析correlation analysis的實現(xiàn)

 更新時間:2019年08月29日 15:01:51   作者:Erin_data  
這篇文章主要介紹了Python中的相關分析correlation analysis的實現(xiàn),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧

相關分析(correlation analysis)

研究兩個或兩個以上隨機變量之間相互依存關系的方向和密切程度的方法。
線性相關關系主要采用皮爾遜(Pearson)相關系數(shù)r來度量連續(xù)變量之間線性相關強度;
r>0,線性正相關;r<0,線性負相關;
r=0,兩個變量之間不存在線性關系,并不代表兩個變量之間不存在任何關系。

相關分析函數(shù)
DataFrame.corr()
Series.corr(other)

函數(shù)說明:
如果由數(shù)據(jù)框調(diào)用corr函數(shù),那么將會計算每個列兩兩之間的相似度
如果由序列調(diào)用corr方法,那么只是該序列與傳入的序列之間的相關度

返回值:
DataFrame調(diào)用;返回DataFrame

Series調(diào)用:返回一個數(shù)值型,大小為相關度

import numpy
import pandas
 
data = pandas.read_csv(
  'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
 
bins = [
  min(data.年齡)-1, 20, 30, 40, max(data.年齡)+1
]
labels = [
  '20歲以及以下', '21歲到30歲', '31歲到40歲', '41歲以上'
]
 
data['年齡分層'] = pandas.cut(
  data.年齡, 
  bins, 
  labels=labels
)
 
ptResult = data.pivot_table(
  values=['年齡'], 
  index=['年齡分層'], 
  columns=['性別'], 
  aggfunc=[numpy.size]
 File "<ipython-input-1-ae921a24967f>", line 25
  aggfunc=[numpy.size]
            ^
SyntaxError: unexpected EOF while parsing
 
 
import numpy
import pandas
 
data = pandas.read_csv(
  'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
 
bins = [
  min(data.年齡)-1, 20, 30, 40, max(data.年齡)+1
]
labels = [
  '20歲以及以下', '21歲到30歲', '31歲到40歲', '41歲以上'
]
 
data['年齡分層'] = pandas.cut(
  data.年齡, 
  bins, 
  labels=labels
)
 
ptResult = data.pivot_table(
  values=['年齡'], 
  index=['年齡分層'], 
  columns=['性別'], 
  aggfunc=[numpy.size]
)
 
ptResult
Out[4]: 
     size    
      年齡    
性別     女   男
年齡分層        
20歲以及以下  111  1950
21歲到30歲 2903 43955
31歲到40歲  735  7994
41歲以上   567  886

以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。

相關文章

最新評論