Python 實現大整數乘法算法的示例代碼
我們平時接觸的長乘法,按位相乘,是一種時間復雜度為 O(n ^ 2) 的算法。今天,我們來介紹一種時間復雜度為 O (n ^ log 3) 的大整數乘法(log 表示以 2 為底的對數)。
介紹原理
karatsuba 算法要求乘數與被乘數要滿足以下幾個條件,第一,乘數與被乘數的位數相同;第二,乘數與被乘數的位數應為 2 次冪,即為 2 ^ 2, 2 ^ 3, 2 ^ 4, 2 ^ n 等數值。
下面我們先來看幾個簡單的例子,并以此來了解 karatsuba 算法的使用方法。
兩位數相乘
我們設被乘數 A = 85,乘數 B = 41。下面來看我們的操作步驟:
將 A, B 一分為二,令 p = A 的前半部分 = 8,q = A 的后半部分 = 5 , r = B 的前半部分 = 4 ,s = B 的后半部分 = 1,n = 2。通過簡單的數學運算:
A * B = pq * rs = (p * 10 + q) * (r * 10 + s) = p * r * 10 ^ 2 + (p * s + q * r ) * 10 + q * s。
令 u = p * r,v =(p - q) * (s - r),w = q * s。所以 A * B = u * 10 ^ 2 + (u + v + w) * 10 + w。
換成數值求解的過程如下:
A * B = 85 * 41 = (8 * 10 + 5) * ( 4 * 10 + 1) = 8 * 4 * 10 * 10 + (8 * 1 + 5 * 4) * 10 + 5 * 1。
其中 u = 8 * 4 = 32,v = (8 - 5) (1 - 4) = -9,w = 5 * 1 = 5。
所以,A * B = 32 * 100 + (32 - 9 + 5) * 10 + 5 = 3485。與長乘法所得結果一致。
四位數相乘
我們設被乘數 A = 8537,乘數 B = 4123。下面來看我們的操作步驟:
將 A, B 一分為二,令 p = A 的前半部分 = 85,q = A 的后半部分 = 37 , r = B 的前半部分 = 41 ,s = B 的后半部分 = 23,n = 4。
==> 其中,u = 85 * 41, v = (85 - 37) * (23 - 41), w = 37 * 23。
==> A * B = 8537 * 4123 = u * 10 ^ 4 + (u + v + w) * 10 ^ 2 + w = 3485_0000 +34_7200 + 851 = 35198051。
在我們計算 u, v, w 的過程中又會涉及兩位數的乘法,我們繼續(xù)使用 Karatsuba 算法得出兩位數相乘的結果。
N 位數相乘
我們令 n 為 乘數與被乘數的位數,令 p = A 的前半部分,q = A 的后半部分, r = B 的前半部分 ,s = B 的后半部分。
==> 其中, u = p * r,v = (p - q) * (s - r),w = q * s。
所以 A * B = u * 10 ^ n + (u + v + w) * 10 ^ (n / 2) + w。
而 u, v, w 則是兩個 n / 2 位的乘法運算。我們繼續(xù)調用 Karatsuba 算法計算 u, v, w 的數值。接著,我們在計算 n / 2 乘法的過程中又會遇到 n / 4 位的乘法運算……以此類推,直到我們遇到兩個個位數的乘法,我們就直接返回這兩個個位數乘法的結果。層層返回,最終得到 N 位數的乘法結果。
時間復雜度
我們平常使用的長乘法,是 O (n ^ 2) 的時間復雜度。比如兩個 N 位數相乘,我們需要將每一位按規(guī)則相乘,所以需要計算 N * N 次乘法。而使用 Karatsuba 算法每層需要計算三次乘法,兩次加法,以及若干次加法,每使用一次 karatsuba 算法,乘法規(guī)模就下降一半。
所以,對于兩個 n = 2 ^ K 位數乘法運算,我們需要計算 3 ^ k 次乘法運算。而 K = log n(底數為 2), 3 ^ K = 3 ^ log n = 2 ^ (log 3 * log n) = 2 ^ (log n * log 3) = n ^ log 3 (底數為 2)。
代碼實現
from math import log2, ceil
def pad(string: str, real_len: int, max_len: int) -> str:
pad_len: int = max_len - real_len
return f"{'0' * pad_len}{string}"
def kara(n1: int, n2: int) -> int:
if n1 < 10 or n2 < 10:
return n1 * n2
n1_str: str = str(n1)
n2_str: str = str(n2)
n1_len: int = len(n1_str)
n2_len: int = len(n2_str)
real_len: int = max(n1_len, n2_len)
max_len: int = 2 ** ceil(log2(real_len))
mid_len: int = max_len >> 1
n1_pad: str = pad(n1_str, n1_len, max_len)
n2_pad: str = pad(n2_str, n2_len, max_len)
p: int = int(n1_pad[:mid_len])
q: int = int(n1_pad[mid_len:])
r: int = int(n2_pad[:mid_len])
s: int = int(n2_pad[mid_len:])
u: int = kara(p, r)
v: int = kara(q-p, r-s)
w: int = kara(q, s)
return u * 10 ** max_len + (u+v+w) * 10 ** mid_len + w
輸出結果:
==> kara(123456, 9734) == 123456 * 9734
==> kara(1234233456756, 32459734) == 1234233456756 * 32459734
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關文章
Python數據可視化 pyecharts實現各種統(tǒng)計圖表過程詳解
這篇文章主要介紹了Python數據可視化 pyecharts實現各種統(tǒng)計圖表過程詳解,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友可以參考下2019-08-08
python人工智能tensorflow常見損失函數LOSS匯總
這篇文章主要為大家介紹了python人工智能tensorflowf常見損失函數LOSS匯總,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2022-05-05

