softmax及python實(shí)現(xiàn)過程解析
相對于自適應(yīng)神經(jīng)網(wǎng)絡(luò)、感知器,softmax巧妙低使用簡單的方法來實(shí)現(xiàn)多分類問題。
- 功能上,完成從N維向量到M維向量的映射
- 輸出的結(jié)果范圍是[0, 1],對于一個sample的結(jié)果所有輸出總和等于1
- 輸出結(jié)果,可以隱含地表達(dá)該類別的概率
softmax的損失函數(shù)是采用了多分類問題中常見的交叉熵,注意經(jīng)常有2個表達(dá)的形式
這兩個版本在求導(dǎo)過程有點(diǎn)不同,但是結(jié)果都是一樣的,同時損失表達(dá)的意思也是相同的,因?yàn)樵诘谝环N表達(dá)形式中,當(dāng)y不是
正確分類時,y_right等于0,當(dāng)y是正確分類時,y_right等于1。
下面基于mnist數(shù)據(jù)做了一個多分類的實(shí)驗(yàn),整體能達(dá)到85%的精度。
'''
softmax classifier for mnist
created on 2019.9.28
author: vince
'''
import math
import logging
import numpy
import random
import matplotlib.pyplot as plt
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
from sklearn.metrics import accuracy_score
def loss_max_right_class_prob(predictions, y):
return -predictions[numpy.argmax(y)];
def loss_cross_entropy(predictions, y):
return -numpy.dot(y, numpy.log(predictions));
'''
Softmax classifier
linear classifier
'''
class Softmax:
def __init__(self, iter_num = 100000, batch_size = 1):
self.__iter_num = iter_num;
self.__batch_size = batch_size;
def train(self, train_X, train_Y):
X = numpy.c_[train_X, numpy.ones(train_X.shape[0])];
Y = numpy.copy(train_Y);
self.L = [];
#initialize parameters
self.__weight = numpy.random.rand(X.shape[1], 10) * 2 - 1.0;
self.__step_len = 1e-3;
logging.info("weight:%s" % (self.__weight));
for iter_index in range(self.__iter_num):
if iter_index % 1000 == 0:
logging.info("-----iter:%s-----" % (iter_index));
if iter_index % 100 == 0:
l = 0;
for i in range(0, len(X), 100):
predictions = self.forward_pass(X[i]);
#l += loss_max_right_class_prob(predictions, Y[i]);
l += loss_cross_entropy(predictions, Y[i]);
l /= len(X);
self.L.append(l);
sample_index = random.randint(0, len(X) - 1);
logging.debug("-----select sample %s-----" % (sample_index));
z = numpy.dot(X[sample_index], self.__weight);
z = z - numpy.max(z);
predictions = numpy.exp(z) / numpy.sum(numpy.exp(z));
dw = self.__step_len * X[sample_index].reshape(-1, 1).dot((predictions - Y[sample_index]).reshape(1, -1));
# dw = self.__step_len * X[sample_index].reshape(-1, 1).dot(predictions.reshape(1, -1));
# dw[range(X.shape[1]), numpy.argmax(Y[sample_index])] -= X[sample_index] * self.__step_len;
self.__weight -= dw;
logging.debug("weight:%s" % (self.__weight));
logging.debug("loss:%s" % (l));
logging.info("weight:%s" % (self.__weight));
logging.info("L:%s" % (self.L));
def forward_pass(self, x):
net = numpy.dot(x, self.__weight);
net = net - numpy.max(net);
net = numpy.exp(net) / numpy.sum(numpy.exp(net));
return net;
def predict(self, x):
x = numpy.append(x, 1.0);
return self.forward_pass(x);
def main():
logging.basicConfig(level = logging.INFO,
format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt = '%a, %d %b %Y %H:%M:%S');
logging.info("trainning begin.");
mnist = read_data_sets('../data/MNIST',one_hot=True) # MNIST_data指的是存放數(shù)據(jù)的文件夾路徑,one_hot=True 為采用one_hot的編碼方式編碼標(biāo)簽
#load data
train_X = mnist.train.images #訓(xùn)練集樣本
validation_X = mnist.validation.images #驗(yàn)證集樣本
test_X = mnist.test.images #測試集樣本
#labels
train_Y = mnist.train.labels #訓(xùn)練集標(biāo)簽
validation_Y = mnist.validation.labels #驗(yàn)證集標(biāo)簽
test_Y = mnist.test.labels #測試集標(biāo)簽
classifier = Softmax();
classifier.train(train_X, train_Y);
logging.info("trainning end. predict begin.");
test_predict = numpy.array([]);
test_right = numpy.array([]);
for i in range(len(test_X)):
predict_label = numpy.argmax(classifier.predict(test_X[i]));
test_predict = numpy.append(test_predict, predict_label);
right_label = numpy.argmax(test_Y[i]);
test_right = numpy.append(test_right, right_label);
logging.info("right:%s, predict:%s" % (test_right, test_predict));
score = accuracy_score(test_right, test_predict);
logging.info("The accruacy score is: %s "% (str(score)));
plt.plot(classifier.L)
plt.show();
if __name__ == "__main__":
main();
損失函數(shù)收斂情況

Sun, 29 Sep 2019 18:08:08 softmax.py[line:104] INFO trainning end. predict begin. Sun, 29 Sep 2019 18:08:08 softmax.py[line:114] INFO right:[7. 2. 1. ... 4. 5. 6.], predict:[7. 2. 1. ... 4. 8. 6.] Sun, 29 Sep 2019 18:08:08 softmax.py[line:116] INFO The accruacy score is: 0.8486
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Python實(shí)現(xiàn)的微信好友數(shù)據(jù)分析功能示例
這篇文章主要介紹了Python實(shí)現(xiàn)的微信好友數(shù)據(jù)分析功能,結(jié)合實(shí)例形式分析了Python使用itchat、pandas、pyecharts等模塊針對微信好友數(shù)據(jù)進(jìn)行統(tǒng)計與計算相關(guān)操作技巧,需要的朋友可以參考下2018-06-06
時間序列預(yù)測中的數(shù)據(jù)滑窗操作實(shí)例(python實(shí)現(xiàn))
滑動窗口操作非常普遍,非常有用,它們也很容易在Python中實(shí)現(xiàn),下面這篇文章主要給大家介紹了關(guān)于時間序列預(yù)測中的數(shù)據(jù)滑窗操作python實(shí)現(xiàn)的相關(guān)資料,需要的朋友可以參考下2022-03-03
基于python select.select模塊通信的實(shí)例講解
下面小編就為大家?guī)硪黄趐ython select.select模塊通信的實(shí)例講解。小編覺得挺不錯的,現(xiàn)在就分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2017-09-09
Pycharm2020.1安裝中文語言插件的詳細(xì)教程(不需要漢化)
這篇文章主要介紹了Pycharm2020.1安裝中文語言插件的詳細(xì)教程,不需要漢化,本文給大家分享三種方法,在這小編推薦使用方法二,具體內(nèi)容詳情大家跟隨小編一起看看吧2020-08-08
Python實(shí)現(xiàn)隨機(jī)從圖像中獲取多個patch
經(jīng)常有一些圖像任務(wù)需要從一張大圖中截取固定大小的patch來進(jìn)行訓(xùn)練。本文就來和大家聊聊如何用Python實(shí)現(xiàn)隨機(jī)從圖像中獲取多個patch,感興趣的可以了解一下2022-08-08

