欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

淺談Python3識別判斷圖片主要顏色并和顏色庫進(jìn)行對比的方法

 更新時間:2019年10月25日 10:53:15   作者:int93  
這篇文章主要介紹了淺談Python3識別判斷圖片主要顏色并和顏色庫進(jìn)行對比的方法,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧

【更新】主要提供兩種方案:

方案一:(參考網(wǎng)上代碼,感覺實(shí)用性不是很強(qiáng))使用PIL截取圖像,然后將RGB轉(zhuǎn)為HSV進(jìn)行判斷,統(tǒng)計判斷顏色,最后輸出RGB值

方案二:使用opencv庫函數(shù)進(jìn)行處理。(效果不錯)

1、將圖片顏色轉(zhuǎn)為hsv,
2、使用cv2.inRange()函數(shù)進(jìn)行背景顏色過濾
3、將過濾后的顏色進(jìn)行二值化處理
4、進(jìn)行形態(tài)學(xué)腐蝕膨脹,cv2.dilate()
5、統(tǒng)計白色區(qū)域面積

詳解:方案一:

轉(zhuǎn)載出處:www.dbjr.com.cn/article/62526.htm

項(xiàng)目實(shí)際需要,對識別出來的車車需要標(biāo)記顏色,因此采用方案如下:

1、通過import PIL.ImageGrab as ImageGrab 將識別出來的汽車矩形框裁剪出來

img_color=image.crop((left,right,top,bottom))

2、將裁剪出來的image進(jìn)行顏色圖像識別

RGB和hsv中間的轉(zhuǎn)換關(guān)系,網(wǎng)上很多,我也沒有具體去研究如何轉(zhuǎn)換的,能用就行

附上測試,封裝成函數(shù)方法:

import colorsys
import PIL.Image as Image
 
def get_dominant_color(image):
  max_score = 0.0001
  dominant_color = None
  for count,(r,g,b) in image.getcolors(image.size[0]*image.size[1]):
    # 轉(zhuǎn)為HSV標(biāo)準(zhǔn)
    saturation = colorsys.rgb_to_hsv(r/255.0, g/255.0, b/255.0)[1]
    y = min(abs(r*2104+g*4130+b*802+4096+131072)>>13,235)
    y = (y-16.0)/(235-16)
 
    #忽略高亮色
    if y > 0.9:
      continue
    score = (saturation+0.1)*count
    if score > max_score:
      max_score = score
      dominant_color = (r,g,b)
  return dominant_color
 
 
if __name__ == '__main__':
  image = Image.open('test.jpg')
  image = image.convert('RGB')
  print(get_dominant_color(image))

測試圖


結(jié)果


在這個網(wǎng)上查詢RGB數(shù)值對應(yīng)的顏色

http://tools.jb51.net/static/colorpicker/index.html


方案二:opencv計算機(jī)視覺庫函數(shù)處理

1、定義HSV顏色字典,參考網(wǎng)上HSV顏色分類


代碼如下:

import numpy as np
import collections
 
#定義字典存放顏色分量上下限
#例如:{顏色: [min分量, max分量]}
#{'red': [array([160, 43, 46]), array([179, 255, 255])]}
 
def getColorList():
  dict = collections.defaultdict(list)
 
  # 黑色
  lower_black = np.array([0, 0, 0])
  upper_black = np.array([180, 255, 46])
  color_list = []
  color_list.append(lower_black)
  color_list.append(upper_black)
  dict['black'] = color_list
 
  # #灰色
  # lower_gray = np.array([0, 0, 46])
  # upper_gray = np.array([180, 43, 220])
  # color_list = []
  # color_list.append(lower_gray)
  # color_list.append(upper_gray)
  # dict['gray']=color_list
 
  # 白色
  lower_white = np.array([0, 0, 221])
  upper_white = np.array([180, 30, 255])
  color_list = []
  color_list.append(lower_white)
  color_list.append(upper_white)
  dict['white'] = color_list
 
  #紅色
  lower_red = np.array([156, 43, 46])
  upper_red = np.array([180, 255, 255])
  color_list = []
  color_list.append(lower_red)
  color_list.append(upper_red)
  dict['red']=color_list
 
  # 紅色2
  lower_red = np.array([0, 43, 46])
  upper_red = np.array([10, 255, 255])
  color_list = []
  color_list.append(lower_red)
  color_list.append(upper_red)
  dict['red2'] = color_list
 
  #橙色
  lower_orange = np.array([11, 43, 46])
  upper_orange = np.array([25, 255, 255])
  color_list = []
  color_list.append(lower_orange)
  color_list.append(upper_orange)
  dict['orange'] = color_list
 
  #黃色
  lower_yellow = np.array([26, 43, 46])
  upper_yellow = np.array([34, 255, 255])
  color_list = []
  color_list.append(lower_yellow)
  color_list.append(upper_yellow)
  dict['yellow'] = color_list
 
  #綠色
  lower_green = np.array([35, 43, 46])
  upper_green = np.array([77, 255, 255])
  color_list = []
  color_list.append(lower_green)
  color_list.append(upper_green)
  dict['green'] = color_list
 
  #青色
  lower_cyan = np.array([78, 43, 46])
  upper_cyan = np.array([99, 255, 255])
  color_list = []
  color_list.append(lower_cyan)
  color_list.append(upper_cyan)
  dict['cyan'] = color_list
 
  #藍(lán)色
  lower_blue = np.array([100, 43, 46])
  upper_blue = np.array([124, 255, 255])
  color_list = []
  color_list.append(lower_blue)
  color_list.append(upper_blue)
  dict['blue'] = color_list
 
  # 紫色
  lower_purple = np.array([125, 43, 46])
  upper_purple = np.array([155, 255, 255])
  color_list = []
  color_list.append(lower_purple)
  color_list.append(upper_purple)
  dict['purple'] = color_list
 
  return dict
 
 
if __name__ == '__main__':
  color_dict = getColorList()
  print(color_dict)
 
  num = len(color_dict)
  print('num=',num)
 
  for d in color_dict:
    print('key=',d)
    print('value=',color_dict[d][1])

2、顏色識別

import cv2
import numpy as np
import colorList
 
filename='car04.jpg'
 
#處理圖片
def get_color(frame):
  print('go in get_color')
  hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
  maxsum = -100
  color = None
  color_dict = colorList.getColorList()
  for d in color_dict:
    mask = cv2.inRange(hsv,color_dict[d][0],color_dict[d][1])
    cv2.imwrite(d+'.jpg',mask)
    binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
    binary = cv2.dilate(binary,None,iterations=2)
    img, cnts, hiera = cv2.findContours(binary.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    sum = 0
    for c in cnts:
      sum+=cv2.contourArea(c)
    if sum > maxsum :
      maxsum = sum
      color = d
 
  return color
 
 
if __name__ == '__main__':
  frame = cv2.imread(filename)
  print(get_color(frame))

3、結(jié)果

原始圖像(網(wǎng)上找的測試圖):

1)、使用cv2.inRange()函數(shù)過濾背景后圖片如下:


2)、可見使用白色分量過濾背景后,出現(xiàn)車輛的輪廓,因此,能夠計算白色區(qū)域的面積,最大的則為該物體顏色


以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

最新評論