python3實(shí)現(xiàn)單目標(biāo)粒子群算法
本文實(shí)例為大家分享了python3單目標(biāo)粒子群算法的具體代碼,供大家參考,具體內(nèi)容如下
關(guān)于PSO的基本知識......就說一下算法流程
1) 初始化粒子群;
隨機(jī)設(shè)置各粒子的位置和速度,默認(rèn)粒子的初始位置為粒子最優(yōu)位置,并根據(jù)所有粒子最優(yōu)位置,選取群體最優(yōu)位置。
2) 判斷是否達(dá)到迭代次數(shù);
若沒有達(dá)到,則跳轉(zhuǎn)到步驟3)。否則,直接輸出結(jié)果。
3) 更新所有粒子的位置和速度;
4) 計(jì)算各粒子的適應(yīng)度值。
將粒子當(dāng)前位置的適應(yīng)度值與粒子最優(yōu)位置的適應(yīng)度值進(jìn)行比較,決定是否更新粒子最優(yōu)位置;將所有粒子最優(yōu)位置的適應(yīng)度值與群體最優(yōu)位置的適應(yīng)度值進(jìn)行比較,決定是否更新群體最優(yōu)位置。然后,跳轉(zhuǎn)到步驟2)。
直接扔代碼......(PS:1.參數(shù)動態(tài)調(diào)節(jié);2.例子是二維的)
首先,是一些準(zhǔn)備工作...
# Import libs import numpy as np import random as rd import matplotlib.pyplot as plt # Constant definition MIN_POS = [-5, -5] # Minimum position of the particle MAX_POS = [5, 5] # Maximum position of the particle MIN_SPD = [-0.5, -0.5] # Minimum speed of the particle MAX_SPD = [1, 1] # Maximum speed of the particle C1_MIN = 0 C1_MAX = 1.5 C2_MIN = 0 C2_MAX = 1.5 W_MAX = 1.4 W_MIN = 0
然后是PSO類
# Class definition
class PSO():
"""
PSO class
"""
def __init__(self,iters=100,pcount=50,pdim=2,mode='min'):
"""
PSO initialization
------------------
"""
self.w = None # Inertia factor
self.c1 = None # Learning factor
self.c2 = None # Learning factor
self.iters = iters # Number of iterations
self.pcount = pcount # Number of particles
self.pdim = pdim # Particle dimension
self.gbpos = np.array([0.0]*pdim) # Group optimal position
self.mode = mode # The mode of PSO
self.cur_pos = np.zeros((pcount, pdim)) # Current position of the particle
self.cur_spd = np.zeros((pcount, pdim)) # Current speed of the particle
self.bpos = np.zeros((pcount, pdim)) # The optimal position of the particle
self.trace = [] # Record the function value of the optimal solution
def init_particles(self):
"""
init_particles function
-----------------------
"""
# Generating particle swarm
for i in range(self.pcount):
for j in range(self.pdim):
self.cur_pos[i,j] = rd.uniform(MIN_POS[j], MAX_POS[j])
self.cur_spd[i,j] = rd.uniform(MIN_SPD[j], MAX_SPD[j])
self.bpos[i,j] = self.cur_pos[i,j]
# Initial group optimal position
for i in range(self.pcount):
if self.mode == 'min':
if self.fitness(self.cur_pos[i]) < self.fitness(self.gbpos):
gbpos = self.cur_pos[i]
elif self.mode == 'max':
if self.fitness(self.cur_pos[i]) > self.fitness(self.gbpos):
gbpos = self.cur_pos[i]
def fitness(self, x):
"""
fitness function
----------------
Parameter:
x :
"""
# Objective function
fitval = 5*np.cos(x[0]*x[1])+x[0]*x[1]+x[1]**3 # min
# Retyrn value
return fitval
def adaptive(self, t, p, c1, c2, w):
"""
"""
#w = 0.95 #0.9-1.2
if t == 0:
c1 = 0
c2 = 0
w = 0.95
else:
if self.mode == 'min':
# c1
if self.fitness(self.cur_pos[p]) > self.fitness(self.bpos[p]):
c1 = C1_MIN + (t/self.iters)*C1_MAX + np.random.uniform(0,0.1)
elif self.fitness(self.cur_pos[p]) <= self.fitness(self.bpos[p]):
c1 = c1
# c2
if self.fitness(self.bpos[p]) > self.fitness(self.gbpos):
c2 = C2_MIN + (t/self.iters)*C2_MAX + np.random.uniform(0,0.1)
elif self.fitness(self.bpos[p]) <= self.fitness(self.gbpos):
c2 = c2
# w
#c1 = C1_MAX - (C1_MAX-C1_MIN)*(t/self.iters)
#c2 = C2_MIN + (C2_MAX-C2_MIN)*(t/self.iters)
w = W_MAX - (W_MAX-W_MIN)*(t/self.iters)
elif self.mode == 'max':
pass
return c1, c2, w
def update(self, t):
"""
update function
---------------
Note that :
1. Update particle position
2. Update particle speed
3. Update particle optimal position
4. Update group optimal position
"""
# Part1 : Traverse the particle swarm
for i in range(self.pcount):
# Dynamic parameters
self.c1, self.c2, self.w = self.adaptive(t,i,self.c1,self.c2,self.w)
# Calculate the speed after particle iteration
# Update particle speed
self.cur_spd[i] = self.w*self.cur_spd[i] \
+self.c1*rd.uniform(0,1)*(self.bpos[i]-self.cur_pos[i])\
+self.c2*rd.uniform(0,1)*(self.gbpos - self.cur_pos[i])
for n in range(self.pdim):
if self.cur_spd[i,n] > MAX_SPD[n]:
self.cur_spd[i,n] = MAX_SPD[n]
elif self.cur_spd[i,n] < MIN_SPD[n]:
self.cur_spd[i,n] = MIN_SPD[n]
# Calculate the position after particle iteration
# Update particle position
self.cur_pos[i] = self.cur_pos[i] + self.cur_spd[i]
for n in range(self.pdim):
if self.cur_pos[i,n] > MAX_POS[n]:
self.cur_pos[i,n] = MAX_POS[n]
elif self.cur_pos[i,n] < MIN_POS[n]:
self.cur_pos[i,n] = MIN_POS[n]
# Part2 : Update particle optimal position
for k in range(self.pcount):
if self.mode == 'min':
if self.fitness(self.cur_pos[k]) < self.fitness(self.bpos[k]):
self.bpos[k] = self.cur_pos[k]
elif self.mode == 'max':
if self.fitness(self.cur_pos[k]) > self.fitness(self.bpos[k]):
self.bpos[k] = self.cur_pos[k]
# Part3 : Update group optimal position
for k in range(self.pcount):
if self.mode == 'min':
if self.fitness(self.bpos[k]) < self.fitness(self.gbpos):
self.gbpos = self.bpos[k]
elif self.mode == 'max':
if self.fitness(self.bpos[k]) > self.fitness(self.gbpos):
self.gbpos = self.bpos[k]
def run(self):
"""
run function
-------------
"""
# Initialize the particle swarm
self.init_particles()
# Iteration
for t in range(self.iters):
# Update all particle information
self.update(t)
#
self.trace.append(self.fitness(self.gbpos))
然后是main...
def main():
"""
main function
"""
for i in range(1):
pso = PSO(iters=100,pcount=50,pdim=2, mode='min')
pso.run()
#
print('='*40)
print('= Optimal solution:')
print('= x=', pso.gbpos[0])
print('= y=', pso.gbpos[1])
print('= Function value:')
print('= f(x,y)=', pso.fitness(pso.gbpos))
#print(pso.w)
print('='*40)
#
plt.plot(pso.trace, 'r')
title = 'MIN: ' + str(pso.fitness(pso.gbpos))
plt.title(title)
plt.xlabel("Number of iterations")
plt.ylabel("Function values")
plt.show()
#
input('= Press any key to exit...')
print('='*40)
exit()
if __name__ == "__main__":
main()
最后是計(jì)算結(jié)果,完美結(jié)束?。。?br />


以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
python3將變量寫入SQL語句的實(shí)現(xiàn)方式
這篇文章主要介紹了python3將變量寫入SQL語句的實(shí)現(xiàn)方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-03-03
TensorFlow中tf.batch_matmul()的用法
這篇文章主要介紹了TensorFlow中tf.batch_matmul()的用法,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2021-06-06
使用Python實(shí)現(xiàn)壓縮pptx的功能
當(dāng)處理大型PPTX文件時,其中包含許多高分辨率照片時,文件大小可能會顯著增加,為了解決這個問題,我們可以使用Python編程語言和python-pptx庫來壓縮PPTX文件中的照片,下面我們就來看看具體操作吧2024-02-02
你知道怎么改進(jìn)Python 二分法和牛頓迭代法求算術(shù)平方根嗎
這篇文章主要介紹了Python編程實(shí)現(xiàn)二分法和牛頓迭代法求平方根代碼的改進(jìn),具有一定參考價值,需要的朋友可以了解下,希望能夠給你帶來幫助2021-08-08

