Python numpy數(shù)組轉(zhuǎn)置與軸變換
這篇文章主要介紹了Python numpy數(shù)組轉(zhuǎn)置與軸變換,文中通過示例代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下
矩陣的轉(zhuǎn)置
>>> import numpy as np
>>> arr=np.arange(15).reshape((3,5))
>>> arr
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> arr.T
array([[ 0, 5, 10],
[ 1, 6, 11],
[ 2, 7, 12],
[ 3, 8, 13],
[ 4, 9, 14]])
矩陣的內(nèi)積
>>> import numpy as np
>>> arr=np.arange(15).reshape((3,5))
>>> arr
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> arr.T
array([[ 0, 5, 10],
[ 1, 6, 11],
[ 2, 7, 12],
[ 3, 8, 13],
[ 4, 9, 14]])
>>> np.dot(arr.T,arr)
array([[125, 140, 155, 170, 185],
[140, 158, 176, 194, 212],
[155, 176, 197, 218, 239],
[170, 194, 218, 242, 266],
[185, 212, 239, 266, 293]])
軸變換
二維軸變換

1.兩軸交換
>>> import numpy as np
>>> arr=np.arange(15).reshape((3,5))
>>> arr
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> arr.transpose(1,0)#1軸和0軸進行交換
array([[ 0, 5, 10],
[ 1, 6, 11],
[ 2, 7, 12],
[ 3, 8, 13],
[ 4, 9, 14]])
三維軸變換
>>> arr = np.arange(16).reshape((2, 2, 4))
>>> arr
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
>>> arr.transpose((1,0,2))
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])
1.這種變化有點麻煩,不好理解。但是如果簡單化就好了,加入用P(x,y,z)來表示矩陣中的每一個點,那么在numpy中,這個x,y,z就分別對應(yīng)0,1,2
2.舉個例子比如原來數(shù)組中0這個元素,它原來的坐標是(0,0,0),那么transpose(1,0,2)對于這個點來說就是把x,y坐標互換,而z坐標不變,則其在新的矩陣中坐標依舊是(0,0,0)不變
3.舉個另外點的例子比如4這個點,其坐標是(0,1,1),那么它的x和y坐標交換之后是(1,0,1),所以它在新的矩陣中位置是(1,0,1)
4.事實上transpose函數(shù)正是對原來矩陣中每個點做這個變換,最后得到新的矩陣
兩軸交換
交換1軸和2軸
>>> arr
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
>>> arr.swapaxes(1,2)
array([[[ 0, 4],
[ 1, 5],
[ 2, 6],
[ 3, 7]],
[[ 8, 12],
[ 9, 13],
[10, 14],
[11, 15]]])
>>> arr
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
淺談Python使用pickle模塊序列化數(shù)據(jù)優(yōu)化代碼的方法
這篇文章主要介紹了淺談Python使用pickle模塊序列化數(shù)據(jù)優(yōu)化代碼的方法,pickle模塊可以對多種Python對象進行序列化和反序列化,序列化稱為pickling,反序列化稱為unpickling,需要的朋友可以參考下2023-07-07
Python打包模塊wheel的使用方法與將python包發(fā)布到PyPI的方法詳解
這篇文章主要介紹了Python打包模塊wheel的使用方法與將python包發(fā)布到PyPI的方法詳解,需要的朋友可以參考下2020-02-02

