Python pandas自定義函數(shù)的使用方法示例
本文實例講述了Python pandas自定義函數(shù)的使用方法。分享給大家供大家參考,具體如下:
自定義函數(shù)的使用
import numpy as np
import pandas as pd
# todo 將自定義的函數(shù)作用到dataframe的行和列 或者Serise的行上
ser1 = pd.Series(np.random.randint(-10,10,5),index=list('abcde'))
df1 = pd.DataFrame(np.random.randint(-10,10,(4,5)),index=list('ACBD'),columns=list('abcde'))
# todo 定義一個函數(shù),求其和,絕對值,最大值減最小值的差值,平方
def func(x):
# print(x)
print('--------------')
num= np.max(x)-np.min(x)
a = abs(x)
b= x**2
# return num
# return a
return b
print(ser1.apply(func))
def func1(x):
# print(x)
print('--------------')
# num= np.max(x)-np.min(x)
a = abs(x)
b= x**2
# return num
# return a
return b
print(df1.apply(func1,axis = 1))
# todo 使用匿名函數(shù)實現(xiàn)----求其和,絕對值,最大值減最小值的差值,
print(df1.apply(lambda x:x**2,axis=1))
print('------')
print(df1.apply(lambda x:np.max(x)-np.min(x),axis=1))
print('---------')
print(df1.apply(lambda x:abs(x),axis=1))
# applymap的使用
# todo 使用applymap 因為applymap作用在每個元素上,所以不需要指定axis
print(df1.applymap(lambda x:x**2))
print('---------')
print(df1.applymap(lambda x:abs(x)))
排序
import numpy as np
import pandas as pd
ser1 = pd.Series(np.random.randint(-10,10,10),index=list('acbdfeghji'))
df1 = pd.DataFrame(np.random.randint(-10,10,(4,5)),index=list('ADBC'),columns=list('abcde'))
print(ser1)
print(df1)
print('------------------')
# todo 按照索引排序 sort_index()
# print(ser1.sort_index())#默認(rèn)升序
# print(ser1.sort_index(ascending=False))#指定ascending為降序
# print(df1.sort_index())#默認(rèn)行升序
# print(df1.sort_index(ascending=False))#行降序
# print(df1.sort_index(axis=1))#列升序
# print(df1.sort_index(ascending=False,axis=1))#列降序
# todo 按照值排序
print(ser1.sort_values())#默認(rèn)升序
print(ser1.sort_values(ascending=False))#指定ascending為降序
# dataframe 對象比較復(fù)雜,需要按照哪一列來進(jìn)行排序
print(df1.sort_values(by='a'))#默認(rèn)列升序
print(df1.sort_values(by='a',ascending=False))#列降序
print(df1.sort_values(by='A',axis=1))#行升序
print(df1.sort_values(by='A',ascending=False,axis=1))#行降序
數(shù)據(jù)重構(gòu)
import numpy as np
import pandas as pd
ser1 = pd.Series(np.random.randint(-10,10,10),index=[list('aabbccddee'),[1,2,1,2,1,2,1,2,1,2]])
df1 = pd.DataFrame(np.random.randint(-10,10,(4,5)),index=list('aabb'),columns=list('abcde'))
print(ser1)
print(df1)
print('-----------------------')
# todo 外層索引取值
print(ser1['a'])#獲取單個外層索引
print(ser1['a':'e'])#獲取多個外層
# todo 內(nèi)層索引取值
print(ser1[:,1])
# todo 指定外層,內(nèi)層索引取值
print(ser1['a',1])
# todo 交換分層-----swaplevel()
print(ser1.swaplevel())
# todo 將Sterise轉(zhuǎn)為dataframe對象外層索引作為行索引,內(nèi)層索引作為列索引
print(ser1.unstack())
# todo 將dataframe轉(zhuǎn)為Sterise對象行索引作為外層索引行索引,列索引作為內(nèi)層索引列
print(df1.stack())
# todo dataframe 轉(zhuǎn)字典
print(df1.to_dict())
# todo dataframe 轉(zhuǎn)csv文件
print(df1.to_csv())
數(shù)據(jù)連接操作
import numpy as np
import pandas as pd
df1 = pd.DataFrame(
{'key1':list('abcdefgh'),'data1':np.random.randint(-5,10,8)}
)
df2 = pd.DataFrame(
{'key2':list('defgh'),'data2':np.random.randint(-5,10,5)}
)
print(df1)
print(df2)
print('--------------------------')
# todo 鏈接
# print(pd.merge(df1,df2,on='key'))# key相同時 通過key連接df1,df2
# print(pd.merge(df1,df2))#不指定,連接df1,df2默認(rèn)通過相同的列來連接
# print(pd.merge(df1,df2,on=data1))#data1相同時 通過data1連接df1,df2
#todo 交集
print(pd.merge(df1,df2,left_on='key1',right_on='key2'))
#todo 并集
print(pd.merge(df1,df2,how='outer',left_on='key1',right_on='key2'))
#todo 左連接
print(pd.merge(df1,df2,how='left',left_on='key1',right_on='key2'))
#todo 右連接
print(pd.merge(df1,df2,how='right',left_on='key1',right_on='key2'))
# todo 通過行索引來指定
print(pd.merge(df1,df2,left_on='data1',right_index=True))#left_on指定左表的列索引為外健,right_index作業(yè)為右表的行索引作為外檢
print(pd.merge(df1,df2,left_index=True,right_index=True))#left_index,right_index,默認(rèn)的情況下,將兩張表按照航索引的相同情況,合成一條數(shù)據(jù)
print(pd.merge(df1,df2,how='left',left_index=True,right_index=True))# 按照行進(jìn)行連接,也能指定鏈接方式
注意點:
1.how = inner,默認(rèn)的,內(nèi)連接,多表的交集
2.how = outer,外連接,多表的并集
3.how = left,指定為左連接,展示左表的完整數(shù)據(jù),不管右表有沒有匹配
4.how = right,指定為右連接,展示右表的完整數(shù)據(jù),不管左表有沒有匹配
數(shù)據(jù)的合并
import numpy as np
import pandas as pd
# todo np數(shù)組的合并 np.concatenate() ,參與合并的數(shù)組,緯度大小是一致的,axis=1 為行排序
# arr1 = np.random.randint(10,20,(3,4))
# arr2 = np.random.randint(10,20,(3,4))
# print(arr1)
# print(arr2)
# print('-------------')
# print(np.concatenate((arr1,arr2),axis=0)) #列合并
# print('----------')
# print(np.concatenate((arr1,arr2),axis=1)) # 行合并
# todo pd的合并 pd.concat()
# ser1 = pd.Series(np.random.randint(10,20,3))
# ser2 = pd.Series(np.random.randint(10,20,5))
# ser3 = pd.Series(np.random.randint(10,20,7))
# print(ser1)
# print(ser2)
# print(ser3)
# print('-------------')
#
# print(pd.concat([ser1,ser2,ser3]))#多個Serise 對象需要用【】包起來,默認(rèn)是列合并
# print(pd.concat([ser1,ser2,ser3],axis=1))# axis=1 行合并 ,不夠的部分用NAN填充
# print(pd.concat([ser1,ser2,ser3],axis=1,join='outer'))# 默認(rèn)是outer 并集
df1 = pd.DataFrame(
{'key1':list('abcdefgh'),'data1':np.random.randint(-5,10,8)}
)
df2 = pd.DataFrame(
{'key2':list('abcde'),'data2':np.random.randint(-5,10,5)}
)
print(pd.concat((df1,df2)))# 默認(rèn)按照列合并
print(pd.concat((df1,df2),axis=1))# 按照行合并
print(pd.concat((df1,df2),axis=1,join='inner'))# 交集合并
分組
import pandas as pd
import numpy as np
df1 = pd.DataFrame(
{'key1':list('abcdefgh'),'data1':np.random.randint(-5,10,8),'key2':list('11223344'),'data2':np.random.randint(-5,10,8)}
)
print(df1)
df2 = pd.DataFrame(
{'key2':list('abcde'),'data2':np.random.randint(-5,10,5)}
)
print('----------------')
# todo 分組 groupby()
group_obj = df1.groupby(by='key2')#通過key1進(jìn)行分組,返回一個分組對象,分組之后可以用函數(shù)進(jìn)行下一步處理,計算過程中,非數(shù)字的數(shù)據(jù)不參與計算
# print(group_obj)
# print('--------rrrr-------')
# print(group_obj.sum()) # 分組求和
# print(group_obj.mean()) # 分組求均值
# print(group_obj.size()) # 每個分組的元素個數(shù)
# print(group_obj.count()) # 每個分組之后,列名里面的個數(shù)
#
# # todo 迭代分組對象 注意點:1.每一個元素形式(分組名,屬于分組的數(shù)據(jù))2.屬于該分組的數(shù)據(jù),也是dataframe對象
# for i in group_obj:
# print(i)
# print('----------')
# # todo 迭代分組對象的拆分
# for name,data in group_obj:
# print('---')
# print(name)
# print(data)
#
# # todo 分組對象轉(zhuǎn)列表
# print(list(group_obj))
# # todo 分組對象轉(zhuǎn)字典
# print(dict(list(group_obj)))
#
#
#
#
# # todo 聚合(數(shù)組產(chǎn)生標(biāo)量的過程,常常用于分組之后的數(shù)據(jù)運算)
# # todo 內(nèi)置的聚合函數(shù)
# # todo sum() 求和
# # todo mean()平均值
# # todo size()
# # todo max()
# # todo min()
# # todo count
#
# print(group_obj.describe()) #查看具體的聚合數(shù)據(jù)
# todo 使用單個內(nèi)置函數(shù)
# print(group_obj.agg('max'))#agg里面可以填寫內(nèi)置函數(shù),如果需要使用內(nèi)置的函數(shù),要用字符串的形式填寫
# print(group_obj.agg('min'))
# # todo 使用多個內(nèi)置函數(shù)
# print(group_obj.agg(['max','min','mean']))#需要用列表的形式
# # todo 使用內(nèi)置的函數(shù)取中文別名
# print(group_obj.agg([('最大值','max'),('最小值','min'),('均值','mean')]))# 第一個參數(shù)是別名
# todo 自定義函數(shù)
def print1(x):
# print(x)
ret = x.max()-x.min()
return ret
print(group_obj.agg([('差值',print1)]))
# todo 匿名函數(shù)
print(lambda x:x.max()-x.min())
# todo data1求最大值,data2 求最小值 不同的列用不同的函數(shù)
print(group_obj.agg(
{
'data1':['max'],
'data2':[('最小值','min')]
}))
數(shù)據(jù)分組之后再合并
import pandas as pd
import numpy as np
# todo 分組聚合之后數(shù)據(jù)的處理
dict_new = {
'data1':np.random.randint(5,15,8),
'data2':np.random.randint(5,15,8),
'data3':4,
'key1':list('aabbccdd'),
'key2':['one','two','three','one','two','three','one','two']
}
df1 = pd.DataFrame(dict_new,index=list('ADCBFEGH'))
print(df1)
# # todo 按照key1進(jìn)行分組,
# groupy_obj = df1.groupby(by='key1')
# print(groupy_obj)
# for name,data in groupy_obj:
# print(name)
# print(data)
# # todo 分組之后進(jìn)行求和操作
# sum_data_group = groupy_obj.sum()
# print(sum_data_group)
# # todo 分組之后增加前綴
# sum_data_group = sum_data_group.add_prefix('group_key1')
# print(sum_data_group)
# # todo 先用merge進(jìn)行關(guān)聯(lián)
# merge_df = pd.merge(df1,sum_data_group,left_on='key1',right_index=True)#左表的列名,右表的行索引名
# print(merge_df)
# todo 取數(shù)據(jù)的兩列分組
groupby_obj = df1.loc[:,['data1','data2']].groupby(df1['key1'])#選區(qū)數(shù)據(jù)其中的數(shù)據(jù),按照數(shù)據(jù)中的列進(jìn)行分組
# todo 求和
data = groupby_obj.sum()
data1 = groupby_obj.transform('sum').add_prefix('trans_group')#transform 來計算會維持原來的數(shù)據(jù)結(jié)構(gòu)
# todo 按行合并
print(pd.concat([df1,data1],axis=1))
關(guān)于Python相關(guān)內(nèi)容感興趣的讀者可查看本站專題:《Python函數(shù)使用技巧總結(jié)》、《Python面向?qū)ο蟪绦蛟O(shè)計入門與進(jìn)階教程》、《Python數(shù)據(jù)結(jié)構(gòu)與算法教程》、《Python字符串操作技巧匯總》、《Python編碼操作技巧總結(jié)》及《Python入門與進(jìn)階經(jīng)典教程》
希望本文所述對大家Python程序設(shè)計有所幫助。
相關(guān)文章
Flask框架學(xué)習(xí)筆記之路由和反向路由詳解【圖文與實例】
這篇文章主要介紹了Flask框架學(xué)習(xí)筆記之路由和反向路由,結(jié)合圖文與實例形式詳細(xì)分析了flask框架中路由與反向路由相關(guān)概念、原理、用法與相關(guān)操作注意事項,需要的朋友可以參考下2019-08-08
python可擴(kuò)展的Blender 3D插件開發(fā)匯總
這篇文章主要為大家介紹了python可擴(kuò)展的Blender 3D插件開發(fā)匯總,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-09-09
Python構(gòu)造自定義方法來美化字典結(jié)構(gòu)輸出的示例
這篇文章主要介紹了用Python構(gòu)造自定義方法來美化字典結(jié)構(gòu)輸出的示例,原理就是利用遞歸法來拼接字符串,需要的朋友可以參考下2016-06-06
教你如何在Pycharm中導(dǎo)入requests模塊
這篇文章主要介紹了教你如何在Pycharm中導(dǎo)入requests模塊,本文給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2021-09-09
Python安裝Numpy和matplotlib的方法(推薦)
下面小編就為大家?guī)硪黄狿ython安裝Numpy和matplotlib的方法(推薦)。小編覺得挺不錯的,現(xiàn)在就分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2017-11-11
Python二叉樹的鏡像轉(zhuǎn)換實現(xiàn)方法示例
這篇文章主要介紹了Python二叉樹的鏡像轉(zhuǎn)換實現(xiàn)方法,結(jié)合實例形式分析了二叉樹鏡像轉(zhuǎn)換的原理及Python相關(guān)算法實現(xiàn)技巧,需要的朋友可以參考下2019-03-03

