numpy創(chuàng)建單位矩陣和對(duì)角矩陣的實(shí)例
在學(xué)習(xí)linear regression時(shí)經(jīng)常處理的數(shù)據(jù)一般多是矩陣或者n維向量的數(shù)據(jù)形式,所以必須對(duì)矩陣有一定的認(rèn)識(shí)基礎(chǔ)。
numpy中創(chuàng)建單位矩陣借助identity()函數(shù)。更為準(zhǔn)確的說,此函數(shù)創(chuàng)建的是一個(gè)n*n的單位數(shù)組,返回值的dtype=array數(shù)據(jù)形式。其中接受的參數(shù)有兩個(gè),第一個(gè)是n值大小,第二個(gè)為數(shù)據(jù)類型,一般為浮點(diǎn)型。單位數(shù)組的概念與單位矩陣相同,主對(duì)角線元素為1,其他元素均為零,等同于單位1。而要想得到單位矩陣,只要用mat()函數(shù)將數(shù)組轉(zhuǎn)換為矩陣即可。
>>> import numpy as np >>> help(np.identity) Help on function identity in module numpy: identity(n, dtype=None) Return the identity array. The identity array is a square array with ones on the main diagonal. Parameters ---------- n : int Number of rows (and columns) in `n` x `n` output. dtype : data-type, optional Data-type of the output. Defaults to ``float``. Returns ------- out : ndarray `n` x `n` array with its main diagonal set to one, and all other elements 0. Examples -------- >>> np.identity(3) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) >>> np.identity(5) array([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]]) >>> A = np.mat(np.identity(5)) >>> A matrix([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]])
矩陣的運(yùn)算中還經(jīng)常使用對(duì)角陣,numpy中的對(duì)角陣用eye()函數(shù)來創(chuàng)建。eye()函數(shù)接受五個(gè)參數(shù),返回一個(gè)單位數(shù)組。第一個(gè)和第二個(gè)參數(shù)N,M分別對(duì)應(yīng)表示創(chuàng)建數(shù)組的行數(shù)和列數(shù),當(dāng)然當(dāng)你只設(shè)定一個(gè)值時(shí),就默認(rèn)了N=M。第三個(gè)參數(shù)k是對(duì)角線指數(shù),跟diagonal中的offset參數(shù)是一樣的,默認(rèn)值為0,就是主對(duì)角線的方向,上三角方向?yàn)檎?,下三角方向?yàn)樨?fù),可以取-n到+m的范圍。第四個(gè)參數(shù)是dtype,用于指定元素的數(shù)據(jù)類型,第五個(gè)參數(shù)是order,用于排序,有‘C'和‘F'兩個(gè)參數(shù),默認(rèn)值為‘C',為行排序,‘F'為列排序。返回值為一個(gè)單位數(shù)組。
>>> help(np.eye) Help on function eye in module numpy: eye(N, M=None, k=0, dtype=<class 'float'>, order='C') Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. order : {'C', 'F'}, optional Whether the output should be stored in row-major (C-style) or column-major (Fortran-style) order in memory. .. versionadded:: 1.14.0 Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[ 0., 1., 0.], [ 0., 0., 1.], [ 0., 0., 0.]])
numpy中的diagonal()方法可以對(duì)n*n的數(shù)組和方陣取對(duì)角線上的元素,diagonal()接受三個(gè)參數(shù)。第一個(gè)offset參數(shù)是主對(duì)角線的方向,默認(rèn)值為0是主對(duì)角線,上三角方向?yàn)檎?,下三角方向?yàn)樨?fù),可以取-n到+n的范圍。第二個(gè)參數(shù)和第三個(gè)參數(shù)是在數(shù)組大于2維時(shí)指定一個(gè)2維數(shù)組時(shí)使用,默認(rèn)值axis1=0,axis2=1。
>>> help(A.diagonal) Help on built-in function diagonal: diagonal(...) method of numpy.matrix instance a.diagonal(offset=0, axis1=0, axis2=1) Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous NumPy versions. In a future version the read-only restriction will be removed. Refer to :func:`numpy.diagonal` for full documentation. See Also -------- numpy.diagonal : equivalent function >>> help(np.diagonal) Help on function diagonal in module numpy: diagonal(a, offset=0, axis1=0, axis2=1) Return specified diagonals. If `a` is 2-D, returns the diagonal of `a` with the given offset, i.e., the collection of elements of the form ``a[i, i+offset]``. If `a` has more than two dimensions, then the axes specified by `axis1` and `axis2` are used to determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by removing `axis1` and `axis2` and appending an index to the right equal to the size of the resulting diagonals. In versions of NumPy prior to 1.7, this function always returned a new, independent array containing a copy of the values in the diagonal. In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal, but depending on this fact is deprecated. Writing to the resulting array continues to work as it used to, but a FutureWarning is issued. Starting in NumPy 1.9 it returns a read-only view on the original array. Attempting to write to the resulting array will produce an error. In some future release, it will return a read/write view and writing to the returned array will alter your original array. The returned array will have the same type as the input array. If you don't write to the array returned by this function, then you can just ignore all of the above. If you depend on the current behavior, then we suggest copying the returned array explicitly, i.e., use ``np.diagonal(a).copy()`` instead of just ``np.diagonal(a)``. This will work with both past and future versions of NumPy. Parameters ---------- a : array_like Array from which the diagonals are taken. offset : int, optional Offset of the diagonal from the main diagonal. Can be positive or negative. Defaults to main diagonal (0). axis1 : int, optional Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to first axis (0). axis2 : int, optional Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to second axis (1). Returns ------- array_of_diagonals : ndarray If `a` is 2-D, then a 1-D array containing the diagonal and of the same type as `a` is returned unless `a` is a `matrix`, in which case a 1-D array rather than a (2-D) `matrix` is returned in order to maintain backward compatibility. If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2` are removed, and a new axis inserted at the end corresponding to the diagonal. Raises ------ ValueError If the dimension of `a` is less than 2. See Also -------- diag : MATLAB work-a-like for 1-D and 2-D arrays. diagflat : Create diagonal arrays. trace : Sum along diagonals. Examples -------- >>> a = np.arange(4).reshape(2,2) >>> a array([[0, 1], [2, 3]]) >>> a.diagonal() array([0, 3]) >>> a.diagonal(1) array([1]) A 3-D example: >>> a = np.arange(8).reshape(2,2,2); a array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> a.diagonal(0, # Main diagonals of two arrays created by skipping ... 0, # across the outer(left)-most axis last and ... 1) # the "middle" (row) axis first. array([[0, 6], [1, 7]]) The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most (column) axis, and that the diagonals are "packed" in rows. >>> a[:,:,0] # main diagonal is [0 6] array([[0, 2], [4, 6]]) >>> a[:,:,1] # main diagonal is [1 7] array([[1, 3], [5, 7]]) >>> A = np.random.randint(low=5, high=30, size=(5, 5)) >>> A array([[25, 15, 26, 6, 22], [27, 14, 22, 16, 21], [22, 17, 10, 14, 25], [11, 9, 27, 20, 6], [24, 19, 19, 26, 14]]) >>> A.diagonal() array([25, 14, 10, 20, 14]) >>> A.diagonal(offset=1) array([15, 22, 14, 6]) >>> A.diagonal(offset=-2) array([22, 9, 19])
以上這篇numpy創(chuàng)建單位矩陣和對(duì)角矩陣的實(shí)例就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
python3 實(shí)現(xiàn)爬取TOP500的音樂信息并存儲(chǔ)到mongoDB數(shù)據(jù)庫(kù)中
今天小編就為大家分享一篇python3 實(shí)現(xiàn)爬取TOP500的音樂信息并存儲(chǔ)到mongoDB數(shù)據(jù)庫(kù)中,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-08-08理解Django 中Call Stack機(jī)制的小Demo
這篇文章主要介紹了理解Django 中Call Stack 機(jī)制的小Demo,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-09-09python人工智能tensorflow函數(shù)np.random模塊使用
這篇文章主要為大家介紹了python人工智能tensorflow函數(shù)np.random模塊使用方法,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-05-05python實(shí)現(xiàn)凱撒密碼加密解密的示例代碼
本文主要介紹了python實(shí)現(xiàn)凱撒密碼加密解密的示例代碼,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2022-06-06