Python譜減法語音降噪實例
更新時間:2019年12月18日 09:50:52 作者:zipaiyou
今天小編就為大家分享一篇Python譜減法語音降噪實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
代碼中用到了nextpow2,其中n = nextpow2(x) 表示最接近x的2的n次冪。
#!/usr/bin/env python import numpy as np import wave import nextpow2 import math # 打開WAV文檔 f = wave.open("filename.wav") # 讀取格式信息 # (nchannels, sampwidth, framerate, nframes, comptype, compname) params = f.getparams() nchannels, sampwidth, framerate, nframes = params[:4] fs = framerate # 讀取波形數(shù)據(jù) str_data = f.readframes(nframes) f.close() # 將波形數(shù)據(jù)轉(zhuǎn)換為數(shù)組 x = np.fromstring(str_data, dtype=np.short) # 計算參數(shù) len_ = 20 * fs // 1000 PERC = 50 len1 = len_ * PERC // 100 len2 = len_ - len1 # 設(shè)置默認(rèn)參數(shù) Thres = 3 Expnt = 2.0 beta = 0.002 G = 0.9 # 初始化漢明窗 win = np.hamming(len_) # normalization gain for overlap+add with 50% overlap winGain = len2 / sum(win) # Noise magnitude calculations - assuming that the first 5 frames is noise/silence nFFT = 2 * 2 ** (nextpow2.nextpow2(len_)) noise_mean = np.zeros(nFFT) j = 0 for k in range(1, 6): noise_mean = noise_mean + abs(np.fft.fft(win * x[j:j + len_], nFFT)) j = j + len_ noise_mu = noise_mean / 5 # --- allocate memory and initialize various variables k = 1 img = 1j x_old = np.zeros(len1) Nframes = len(x) // len2 - 1 xfinal = np.zeros(Nframes * len2) # ========================= Start Processing =============================== for n in range(0, Nframes): # Windowing insign = win * x[k-1:k + len_ - 1] # compute fourier transform of a frame spec = np.fft.fft(insign, nFFT) # compute the magnitude sig = abs(spec) # save the noisy phase information theta = np.angle(spec) SNRseg = 10 * np.log10(np.linalg.norm(sig, 2) ** 2 / np.linalg.norm(noise_mu, 2) ** 2) def berouti(SNR): if -5.0 <= SNR <= 20.0: a = 4 - SNR * 3 / 20 else: if SNR < -5.0: a = 5 if SNR > 20: a = 1 return a def berouti1(SNR): if -5.0 <= SNR <= 20.0: a = 3 - SNR * 2 / 20 else: if SNR < -5.0: a = 4 if SNR > 20: a = 1 return a if Expnt == 1.0: # 幅度譜 alpha = berouti1(SNRseg) else: # 功率譜 alpha = berouti(SNRseg) ############# sub_speech = sig ** Expnt - alpha * noise_mu ** Expnt; # 當(dāng)純凈信號小于噪聲信號的功率時 diffw = sub_speech - beta * noise_mu ** Expnt # beta negative components def find_index(x_list): index_list = [] for i in range(len(x_list)): if x_list[i] < 0: index_list.append(i) return index_list z = find_index(diffw) if len(z) > 0: # 用估計出來的噪聲信號表示下限值 sub_speech[z] = beta * noise_mu[z] ** Expnt # --- implement a simple VAD detector -------------- if SNRseg < Thres: # Update noise spectrum noise_temp = G * noise_mu ** Expnt + (1 - G) * sig ** Expnt # 平滑處理噪聲功率譜 noise_mu = noise_temp ** (1 / Expnt) # 新的噪聲幅度譜 # flipud函數(shù)實現(xiàn)矩陣的上下翻轉(zhuǎn),是以矩陣的“水平中線”為對稱軸 # 交換上下對稱元素 sub_speech[nFFT // 2 + 1:nFFT] = np.flipud(sub_speech[1:nFFT // 2]) x_phase = (sub_speech ** (1 / Expnt)) * (np.array([math.cos(x) for x in theta]) + img * (np.array([math.sin(x) for x in theta]))) # take the IFFT xi = np.fft.ifft(x_phase).real # --- Overlap and add --------------- xfinal[k-1:k + len2 - 1] = x_old + xi[0:len1] x_old = xi[0 + len1:len_] k = k + len2 # 保存文件 wf = wave.open('outfile.wav', 'wb') # 設(shè)置參數(shù) wf.setparams(params) # 設(shè)置波形文件 .tostring()將array轉(zhuǎn)換為data wave_data = (winGain * xfinal).astype(np.short) wf.writeframes(wave_data.tostring()) wf.close()
以上這篇Python譜減法語音降噪實例就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
pytorch:實現(xiàn)簡單的GAN示例(MNIST數(shù)據(jù)集)
今天小編就為大家分享一篇pytorch:實現(xiàn)簡單的GAN示例(MNIST數(shù)據(jù)集),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-01-01Python列表list常用內(nèi)建函數(shù)實例小結(jié)
這篇文章主要介紹了Python列表list常用內(nèi)建函數(shù),結(jié)合實例形式總結(jié)分析了Python列表list常見內(nèi)建函數(shù)的功能、使用方法及相關(guān)操作注意事項,需要的朋友可以參考下2019-10-10Python中numpy模塊常見用法demo實例小結(jié)
這篇文章主要介紹了Python中numpy模塊常見用法,結(jié)合實例形式總結(jié)分析了numpy常見的運算操作技巧與注意事項,需要的朋友可以參考下2019-03-03windowns使用PySpark環(huán)境配置和基本操作
pyspark是Spark對Python的api接口,可以在Python環(huán)境中通過調(diào)用pyspark模塊來操作spark,這篇文章主要介紹了windowns使用PySpark環(huán)境配置和基本操作,感興趣的可以了解一下2021-05-05高質(zhì)量Python代碼編寫的5個優(yōu)化技巧
這篇文章主要為大家詳細(xì)介紹了編寫高質(zhì)量Python代碼的5個優(yōu)化技巧,具有一定的參考價值,感興趣的小伙伴們可以參考一下2017-11-11