利用OpenCV和Python實現(xiàn)查找圖片差異
使用OpenCV和Python查找圖片差異
flyfish
方法1 均方誤差的算法(Mean Squared Error , MSE)
下面的一些表達與《TensorFlow - 協(xié)方差矩陣》式子表達式一樣的
擬合 誤差平方和( sum of squared errors)
residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared errors of prediction (SSE),
also known as 就我們所說的
RSS, SSR ,SSE表達的是一個意思
def mse(imageA, imageB): # the 'Mean Squared Error' between the two images is the # sum of the squared difference between the two images; # NOTE: the two images must have the same dimension err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2) err /= float(imageA.shape[0] * imageA.shape[1]) # return the MSE, the lower the error, the more "similar" # the two images are return err
方法2 SSIM
structural similarity index measurement (SSIM) system
一種衡量兩幅圖像結(jié)構(gòu)相似度的新指標,其值越大越好,最大為1。
新建一個Python文件,命名為 image_diff.py
原文
Image Difference with OpenCV and Python
原理
根據(jù)參數(shù)讀取兩張圖片并轉(zhuǎn)換為灰度:
使用SSIM計算兩個圖像之間的差異,這種方法已經(jīng)在scikit-image 庫中實現(xiàn)
在兩個圖像之間的不同部分繪制矩形邊界框。
代碼如下 已編譯通過
from skimage.measure import compare_ssim #~ import skimage as ssim import argparse import imutils import cv2 # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-f", "--first", required=True, help="first input image") ap.add_argument("-s", "--second", required=True, help="second") args = vars(ap.parse_args()) # load the two input images imageA = cv2.imread(args["first"]) imageB = cv2.imread(args["second"]) ''' imageA = cv2.imread("E:\\1.png") imageB = cv2.imread("E:\\2.png") ''' # convert the images to grayscale grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY) grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY) # compute the Structural Similarity Index (SSIM) between the two # images, ensuring that the difference image is returned #structural similarity index measurement (SSIM) system一種衡量兩幅圖像結(jié)構(gòu)相似度的新指標,其值越大越好,最大為1。 (score, diff) = compare_ssim(grayA, grayB, full=True) diff = (diff * 255).astype("uint8") print("SSIM: {}".format(score)) # threshold the difference image, followed by finding contours to # obtain the regions of the two input images that differ thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if imutils.is_cv2() else cnts[1] # loop over the contours for c in cnts: # compute the bounding box of the contour and then draw the # bounding box on both input images to represent where the two # images differ (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(imageA, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.rectangle(imageB, (x, y), (x + w, y + h), (0, 0, 255), 2) # show the output images cv2.imshow("Original", imageA) cv2.imshow("Modified", imageB) cv2.imshow("Diff", diff) cv2.imshow("Thresh", thresh) cv2.waitKey(0)
使用方法
python image_diff.py –first original.png –second images/modified.png
如果不想使用參數(shù)將參數(shù)代碼部分直接變成
imageA = cv2.imread(“E:\1.png”) imageB = cv2.imread(“E:\2.png”)
以上這篇利用OpenCV和Python實現(xiàn)查找圖片差異就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
- 用openCV和Python 實現(xiàn)圖片對比,并標識出不同點的方式
- Python+OpenCV 實現(xiàn)圖片無損旋轉(zhuǎn)90°且無黑邊
- python opencv圖片編碼為h264文件的實例
- Python實現(xiàn)圖片裁剪的兩種方式(Pillow和OpenCV)
- python opencv將表格圖片按照表格框線分割和識別
- Python Opencv提取圖片中某種顏色組成的圖形的方法
- python+openCV調(diào)用攝像頭拍攝和處理圖片的實現(xiàn)
- python opencv將圖片轉(zhuǎn)為灰度圖的方法示例
- 使用Python opencv實現(xiàn)視頻與圖片的相互轉(zhuǎn)換
- python通過opencv實現(xiàn)圖片裁剪原理解析
相關(guān)文章
Python基于正則表達式實現(xiàn)檢查文件內(nèi)容的方法【文件檢索】
這篇文章主要介紹了Python基于正則表達式實現(xiàn)檢查文件內(nèi)容的方法,可實現(xiàn)針對文件中import強制依賴的文件關(guān)系檢索,涉及Python文件目錄的遍歷及正則匹配相關(guān)操作技巧,需要的朋友可以參考下2017-08-08Python3基礎(chǔ)之條件與循環(huán)控制實例解析
這篇文章主要介紹了Python3基礎(chǔ)的條件與循環(huán)控制,需要的朋友可以參考下2014-08-08Django admin實現(xiàn)圖書管理系統(tǒng)菜鳥級教程完整實例
這篇文章主要介紹了Django admin實現(xiàn)圖書管理系統(tǒng)菜鳥級教程完整實例,具有一定借鑒價值,需要的朋友可以參考下。2017-12-12