欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Pytorch的mean和std調(diào)查實(shí)例

 更新時(shí)間:2020年01月02日 10:09:43   作者:機(jī)器學(xué)習(xí)的小學(xué)生  
今天小編就為大家分享一篇Pytorch的mean和std調(diào)查實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧

如下所示:

# coding: utf-8

from __future__ import print_function
import copy
import click
import cv2
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import models, transforms

import matplotlib.pyplot as plt
import load_caffemodel
import scipy.io as sio

# if model has LSTM
# torch.backends.cudnn.enabled = False

imgpath = 'D:/ck/files_detected_face224/'   

imgname = 'S055_002_00000025.png' # anger
image_path = imgpath + imgname

mean_file = [0.485, 0.456, 0.406]
std_file = [0.229, 0.224, 0.225]
raw_image = cv2.imread(image_path)[..., ::-1]
print(raw_image.shape)
raw_image = cv2.resize(raw_image, (224, ) * 2)
image = transforms.Compose([
  transforms.ToTensor(),
  transforms.Normalize(
    mean=mean_file,
    std =std_file,
    #mean = mean_file,
    #std = std_file,
  )
])(raw_image).unsqueeze(0)

print(image.shape)

convert_image1 = image.numpy()
convert_image1 = np.squeeze(convert_image1) # 3* 224 *224, C * H * W
convert_image1 = convert_image1 * np.reshape(std_file,(3,1,1)) + np.reshape(mean_file,(3,1,1))
convert_image1 = np.transpose(convert_image1, (1,2,0)) # H * W * C
print(convert_image1.shape)

convert_image1 = convert_image1 * 255

diff = raw_image - convert_image1
err = np.max(diff)
print(err)
plt.imshow(np.uint8(convert_image1))
plt.show()

結(jié)論:

input_image = (raw_image / 255 - mean) ./ std 

下面調(diào)查均值文件和方差文件是如何生成的:

mean_file = [0.485, 0.456, 0.406]
std_file = [0.229, 0.224, 0.225]
# coding: utf-8
import matplotlib.pyplot as plt
import argparse
import os
import numpy as np
import torchvision
import torchvision.transforms as transforms

dataset_names = ('cifar10','cifar100','mnist')

parser = argparse.ArgumentParser(description='PyTorchLab')
parser.add_argument('-d', '--dataset', metavar='DATA', default='cifar10', choices=dataset_names,
          help='dataset to be used: ' + ' | '.join(dataset_names) + ' (default: cifar10)')

args = parser.parse_args()

data_dir = os.path.join('.', args.dataset)

print(args.dataset)
args.dataset = 'cifar10'
if args.dataset == "cifar10":
  train_transform = transforms.Compose([transforms.ToTensor()])
  train_set = torchvision.datasets.CIFAR10(root=data_dir, train=True, download=True, transform=train_transform)
  #print(vars(train_set))
  print(train_set.train_data.shape)
  print(train_set.train_data.mean(axis=(0,1,2))/255)
  print(train_set.train_data.std(axis=(0,1,2))/255)

  # imshow image
  train_data = train_set.train_data
  ind = 100
  img0 = train_data[ind,...]
  ## test channel number, in total , the correct channel is : RGB,not like BGR in caffe
  # error produce
  #b,g,r=cv2.split(img0)
  #img0=cv2.merge([r,g,b])

  print(img0.shape)
  print(type(img0))
  plt.imshow(img0)
  plt.show() # in ship in sea

  #img0 = cv2.resize(img0,(224,224))
  #cv2.imshow('img0',img0)
  #cv2.waitKey()

elif args.dataset == "cifar100":
  train_transform = transforms.Compose([transforms.ToTensor()])
  train_set = torchvision.datasets.CIFAR100(root=data_dir, train=True, download=True, transform=train_transform)
  #print(vars(train_set))
  print(train_set.train_data.shape)
  print(np.mean(train_set.train_data, axis=(0,1,2))/255)
  print(np.std(train_set.train_data, axis=(0,1,2))/255)

elif args.dataset == "mnist":
  train_transform = transforms.Compose([transforms.ToTensor()])
  train_set = torchvision.datasets.MNIST(root=data_dir, train=True, download=True, transform=train_transform)
  #print(vars(train_set))
  print(list(train_set.train_data.size()))
  print(train_set.train_data.float().mean()/255)
  print(train_set.train_data.float().std()/255)

結(jié)果:

cifar10
Files already downloaded and verified
(50000, 32, 32, 3)
[ 0.49139968 0.48215841 0.44653091]
[ 0.24703223 0.24348513 0.26158784]
(32, 32, 3)
<class 'numpy.ndarray'>

使用matlab檢測(cè)是如何計(jì)算mean_file和std_file的:

% load cifar10 dataset

data = load('cifar10_train_data.mat');
train_data = data.train_data;
disp(size(train_data));

temp = mean(train_data,1);
disp(size(temp));

train_data = double(train_data);

% compute mean_file 
mean_val = mean(mean(mean(train_data,1),2),3)/255;


% compute std_file 
temp1 = train_data(:,:,:,1);
std_val1 = std(temp1(:))/255;

temp2 = train_data(:,:,:,2);
std_val2 = std(temp2(:))/255;

temp3 = train_data(:,:,:,3);
std_val3 = std(temp3(:))/255;

mean_val = squeeze(mean_val);
std_val = [std_val1, std_val2, std_val3];

disp(mean_val);
disp(std_val);

% result: mean_val: [0.4914, 0.4822, 0.4465]
%     std_val: [0.2470, 0.2435, 0.2616]

均值計(jì)算的過(guò)程也可以遵循標(biāo)準(zhǔn)差的計(jì)算過(guò)程。為 了簡(jiǎn)單,例如對(duì)于一個(gè)矩陣,所有元素的均值,等于兩個(gè)方向上先后均值。所以會(huì)直接采用如下的形式:

mean_val = mean(mean(mean(train_data,1),2),3)/255;

標(biāo)準(zhǔn)差的計(jì)算是每一個(gè)通道的對(duì)所有樣本的求標(biāo)準(zhǔn)差。然后再除以255。

以上這篇Pytorch的mean和std調(diào)查實(shí)例就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

相關(guān)文章

  • Python 如何強(qiáng)制限定小數(shù)點(diǎn)位數(shù)

    Python 如何強(qiáng)制限定小數(shù)點(diǎn)位數(shù)

    這篇文章主要介紹了Python 強(qiáng)制限定小數(shù)點(diǎn)位數(shù)的操作方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2021-03-03
  • Pytorch閱讀文檔中的flatten函數(shù)

    Pytorch閱讀文檔中的flatten函數(shù)

    PyTorch提供了一個(gè)非常方便的函數(shù)flatten()來(lái)完成這個(gè)任務(wù),本文將介紹Pytorch閱讀文檔中的flatten函數(shù),并提供一些示例代碼,感興趣的朋友一起看看吧
    2023-11-11
  • Python和Sublime整合過(guò)程圖示

    Python和Sublime整合過(guò)程圖示

    這篇文章主要介紹了Python和Sublime整合過(guò)程圖示,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下
    2019-12-12
  • 使用Python?VTK?完成圖像切割

    使用Python?VTK?完成圖像切割

    這篇文章主要介紹了使用Python?VTK?完成圖像切割,文章內(nèi)容基于python的相關(guān)資料展開(kāi)對(duì)主題的詳細(xì)介紹,具有一定的參考價(jià)值,需要的小伙伴可以參考一下
    2022-04-04
  • 13行python代碼實(shí)現(xiàn)對(duì)微信進(jìn)行推送消息的示例代碼

    13行python代碼實(shí)現(xiàn)對(duì)微信進(jìn)行推送消息的示例代碼

    本文主要介紹了13行python代碼實(shí)現(xiàn)對(duì)微信進(jìn)行推送消息的示例代碼,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2022-08-08
  • tensorflow生成多個(gè)tfrecord文件實(shí)例

    tensorflow生成多個(gè)tfrecord文件實(shí)例

    今天小編就為大家分享一篇tensorflow生成多個(gè)tfrecord文件實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2020-02-02
  • 徹底卸載anaconda詳細(xì)教程(推薦!)

    徹底卸載anaconda詳細(xì)教程(推薦!)

    用anaconda更改我的python版本,就是出現(xiàn)了凍結(jié)無(wú)法更改等等之類的問(wèn)題,擔(dān)心更新anaconda還是會(huì)出錯(cuò),于是打算卸載anaconda,重新下載一個(gè)安裝,下面這篇文章主要給大家介紹了關(guān)于徹底卸載anaconda的相關(guān)資料,需要的朋友可以參考下
    2022-11-11
  • Python還能這么玩之只用30行代碼從excel提取個(gè)人值班表

    Python還能這么玩之只用30行代碼從excel提取個(gè)人值班表

    公司實(shí)行項(xiàng)目值班制度,拿到值班表,看到全部的值班信息,要去查找自己的值班信息,是一件頭痛的事情.作為程序員,當(dāng)然要簡(jiǎn)化,將自己的信息提煉出來(lái),需要的朋友可以參考下
    2021-06-06
  • Pandas實(shí)現(xiàn)groupby分組統(tǒng)計(jì)方法實(shí)例

    Pandas實(shí)現(xiàn)groupby分組統(tǒng)計(jì)方法實(shí)例

    在數(shù)據(jù)處理的過(guò)程,有可能需要對(duì)一堆數(shù)據(jù)分組處理,例如對(duì)不同的列進(jìn)行agg聚合操作(mean,min,max等等),下面這篇文章主要給大家介紹了關(guān)于Pandas實(shí)現(xiàn)groupby分組統(tǒng)計(jì)方法的相關(guān)資料,需要的朋友可以參考下
    2023-06-06
  • Python中類變量和實(shí)例變量的區(qū)別

    Python中類變量和實(shí)例變量的區(qū)別

    這篇文章主要介紹了Python中類變量和實(shí)例變量的區(qū)別,文章針對(duì)Python類變量和實(shí)例變量的問(wèn)題,給出了具體說(shuō)明和演示,需要的小伙伴可以參考一下
    2022-02-02

最新評(píng)論