Pytorch提取模型特征向量保存至csv的例子
Pytorch提取模型特征向量
# -*- coding: utf-8 -*- """ dj """ import torch import torch.nn as nn import os from torchvision import models, transforms from torch.autograd import Variable import numpy as np from PIL import Image import torchvision.models as models import pretrainedmodels import pandas as pd class FCViewer(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class M(nn.Module): def __init__(self, backbone1, drop, pretrained=True): super(M,self).__init__() if pretrained: img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet') else: img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained=None) self.img_encoder = list(img_model.children())[:-2] self.img_encoder.append(nn.AdaptiveAvgPool2d(1)) self.img_encoder = nn.Sequential(*self.img_encoder) if drop > 0: self.img_fc = nn.Sequential(FCViewer()) else: self.img_fc = nn.Sequential( FCViewer()) def forward(self, x_img): x_img = self.img_encoder(x_img) x_img = self.img_fc(x_img) return x_img model1=M('resnet18',0,pretrained=True) features_dir = '/home/cc/Desktop/features' transform1 = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()]) file_path='/home/cc/Desktop/picture' names = os.listdir(file_path) print(names) for name in names: pic=file_path+'/'+name img = Image.open(pic) img1 = transform1(img) x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False) y = model1(x) y = y.data.numpy() y = y.tolist() #print(y) test=pd.DataFrame(data=y) #print(test) test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)
jiazaixunlianhaodemoxing
import torch import torch.nn.functional as F import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import argparse class ResidualBlock(nn.Module): def __init__(self, inchannel, outchannel, stride=1): super(ResidualBlock, self).__init__() self.left = nn.Sequential( nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(outchannel), nn.ReLU(inplace=True), nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(outchannel) ) self.shortcut = nn.Sequential() if stride != 1 or inchannel != outchannel: self.shortcut = nn.Sequential( nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(outchannel) ) def forward(self, x): out = self.left(x) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, ResidualBlock, num_classes=10): super(ResNet, self).__init__() self.inchannel = 64 self.conv1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(), ) self.layer1 = self.make_layer(ResidualBlock, 64, 2, stride=1) self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2) self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2) self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2) self.fc = nn.Linear(512, num_classes) def make_layer(self, block, channels, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) #strides=[1,1] layers = [] for stride in strides: layers.append(block(self.inchannel, channels, stride)) self.inchannel = channels return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.fc(out) return out def ResNet18(): return ResNet(ResidualBlock) import os from torchvision import models, transforms from torch.autograd import Variable import numpy as np from PIL import Image import torchvision.models as models import pretrainedmodels import pandas as pd class FCViewer(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class M(nn.Module): def __init__(self, backbone1, drop, pretrained=True): super(M,self).__init__() if pretrained: img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet') else: img_model = ResNet18() we='/home/cc/Desktop/dj/model1/incption--7' # 模型定義-ResNet #net = ResNet18().to(device) img_model.load_state_dict(torch.load(we))#diaoyong self.img_encoder = list(img_model.children())[:-2] self.img_encoder.append(nn.AdaptiveAvgPool2d(1)) self.img_encoder = nn.Sequential(*self.img_encoder) if drop > 0: self.img_fc = nn.Sequential(FCViewer()) else: self.img_fc = nn.Sequential( FCViewer()) def forward(self, x_img): x_img = self.img_encoder(x_img) x_img = self.img_fc(x_img) return x_img model1=M('resnet18',0,pretrained=None) features_dir = '/home/cc/Desktop/features' transform1 = transforms.Compose([ transforms.Resize(56), transforms.CenterCrop(32), transforms.ToTensor()]) file_path='/home/cc/Desktop/picture' names = os.listdir(file_path) print(names) for name in names: pic=file_path+'/'+name img = Image.open(pic) img1 = transform1(img) x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False) y = model1(x) y = y.data.numpy() y = y.tolist() #print(y) test=pd.DataFrame(data=y) #print(test) test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)
以上這篇Pytorch提取模型特征向量保存至csv的例子就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
python光學(xué)仿真學(xué)習(xí)wxpython創(chuàng)建手速測(cè)試程序
這篇文章主要介紹了python光學(xué)仿真學(xué)習(xí)使用wxpython創(chuàng)建一個(gè)手速測(cè)試程序示例的實(shí)現(xiàn),有需要的朋友可以借鑒參考下,希望能夠有所幫助2021-10-10使用Atom支持基于Jupyter的Python開(kāi)教程詳解
這篇文章主要介紹了使用Atom支持基于Jupyter的Python開(kāi)發(fā),Vscode雖然說(shuō)也有連接Jupyter的工具,但是交互式的開(kāi)發(fā)Hydrogen體驗(yàn)更好,需要的朋友可以參考下2021-08-08Pytorch基本變量類(lèi)型FloatTensor與Variable用法
今天小編就為大家分享一篇Pytorch基本變量類(lèi)型FloatTensor與Variable用法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-01-01在python項(xiàng)目的docker鏡像里如何使用pdm管理依賴(lài)
在 DjangoStarter 項(xiàng)目中,我已經(jīng)使用 pdm 作為默認(rèn)的包管理器,不再直接使用 pip,所以部署的時(shí)候 dockerfile 和 docker-compose 配置需要修改一下,這篇文章主要介紹了在python項(xiàng)目的docker鏡像里使用pdm管理依賴(lài),需要的朋友可以參考下2024-08-08python實(shí)現(xiàn)單目標(biāo)、多目標(biāo)、多尺度、自定義特征的KCF跟蹤算法(實(shí)例代碼)
這篇文章主要介紹了python實(shí)現(xiàn)單目標(biāo)、多目標(biāo)、多尺度、自定義特征的KCF跟蹤算法,本文通過(guò)實(shí)例代碼給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-01-01Python Word文件自動(dòng)化實(shí)戰(zhàn)之簡(jiǎn)歷篩選
本文將利用Python自動(dòng)化做一個(gè)具有實(shí)操性的小練習(xí),即通過(guò)讀取簡(jiǎn)歷來(lái)篩選出符合招聘條件的簡(jiǎn)歷。文中的示例代碼講解詳細(xì),感興趣的小伙伴可以跟隨小編一起學(xué)習(xí)一下2022-05-05Python Paramiko創(chuàng)建文件目錄并上傳文件詳解
Paramiko是一個(gè)用于進(jìn)行SSH2會(huì)話的Python庫(kù),它支持加密、認(rèn)證和文件傳輸?shù)裙δ?本文旨在詳細(xì)指導(dǎo)新手朋友如何使用Python的Paramiko庫(kù)來(lái)創(chuàng)建遠(yuǎn)程文件目錄并上傳文件,希望對(duì)大家有所幫助2024-10-10PyCharm如何設(shè)置Console控制臺(tái)輸出自動(dòng)換行
這篇文章主要介紹了PyCharm如何設(shè)置Console控制臺(tái)輸出自動(dòng)換行問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2023-05-05