如何基于Python實現(xiàn)自動掃雷
這篇文章主要介紹了如何基于Python實現(xiàn)自動掃雷,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友可以參考下

自動掃雷一般分為兩種,一種是讀取內(nèi)存數(shù)據(jù),而另一種是通過分析圖片獲得數(shù)據(jù),并通過模擬鼠標操作,這里我用的是第二種方式。
一、準備工作
我的版本是 python 3.6.1
python的第三方庫:
- win32api
- win32gui
- win32con
- Pillow
- numpy
- opencv
可通過 pip install --upgrade SomePackage 來進行安裝
注意:有的版本是下載pywin32,但是有的要把pywin32升級到最高并自動下載了pypiwin32,具體情況每個python版本可能都略有不同
我給出我的第三方庫和版本僅供參考
二、關(guān)鍵代碼組成
1.找到游戲窗口與坐標
#掃雷游戲窗口
class_name = "TMain"
title_name = "Minesweeper Arbiter "
hwnd = win32gui.FindWindow(class_name, title_name)
#窗口坐標
left = 0
top = 0
right = 0
bottom = 0
if hwnd:
print("找到窗口")
left, top, right, bottom = win32gui.GetWindowRect(hwnd)
#win32gui.SetForegroundWindow(hwnd)
print("窗口坐標:")
print(str(left)+' '+str(right)+' '+str(top)+' '+str(bottom))
else:
print("未找到窗口")
2.鎖定并抓取雷區(qū)圖像
#鎖定雷區(qū)坐標 #去除周圍功能按鈕以及多余的界面 #具體的像素值是通過QQ的截圖來判斷的 left += 15 top += 101 right -= 15 bottom -= 42 #抓取雷區(qū)圖像 rect = (left, top, right, bottom) img = ImageGrab.grab().crop(rect)
3.各圖像的RGBA值
#數(shù)字1-8 周圍雷數(shù) #0 未被打開 #ed 被打開 空白 #hongqi 紅旗 #boom 普通雷 #boom_red 踩中的雷 rgba_ed = [(225, (192, 192, 192)), (31, (128, 128, 128))] rgba_hongqi = [(54, (255, 255, 255)), (17, (255, 0, 0)), (109, (192, 192, 192)), (54, (128, 128, 128)), (22, (0, 0, 0))] rgba_0 = [(54, (255, 255, 255)), (148, (192, 192, 192)), (54, (128, 128, 128))] rgba_1 = [(185, (192, 192, 192)), (31, (128, 128, 128)), (40, (0, 0, 255))] rgba_2 = [(160, (192, 192, 192)), (31, (128, 128, 128)), (65, (0, 128, 0))] rgba_3 = [(62, (255, 0, 0)), (163, (192, 192, 192)), (31, (128, 128, 128))] rgba_4 = [(169, (192, 192, 192)), (31, (128, 128, 128)), (56, (0, 0, 128))] rgba_5 = [(70, (128, 0, 0)), (155, (192, 192, 192)), (31, (128, 128, 128))] rgba_6 = [(153, (192, 192, 192)), (31, (128, 128, 128)), (72, (0, 128, 128))] rgba_8 = [(149, (192, 192, 192)), (107, (128, 128, 128))] rgba_boom = [(4, (255, 255, 255)), (144, (192, 192, 192)), (31, (128, 128, 128)), (77, (0, 0, 0))] rgba_boom_red = [(4, (255, 255, 255)), (144, (255, 0, 0)), (31, (128, 128, 128)), (77, (0, 0, 0))]
4.掃描雷區(qū)圖像保存至一個二維數(shù)組map
#掃描雷區(qū)圖像
def showmap():
img = ImageGrab.grab().crop(rect)
for y in range(blocks_y):
for x in range(blocks_x):
this_image = img.crop((x * block_width, y * block_height, (x + 1) * block_width, (y + 1) * block_height))
if this_image.getcolors() == rgba_0:
map[y][x] = 0
elif this_image.getcolors() == rgba_1:
map[y][x] = 1
elif this_image.getcolors() == rgba_2:
map[y][x] = 2
elif this_image.getcolors() == rgba_3:
map[y][x] = 3
elif this_image.getcolors() == rgba_4:
map[y][x] = 4
elif this_image.getcolors() == rgba_5:
map[y][x] = 5
elif this_image.getcolors() == rgba_6:
map[y][x] = 6
elif this_image.getcolors() == rgba_8:
map[y][x] = 8
elif this_image.getcolors() == rgba_ed:
map[y][x] = -1
elif this_image.getcolors() == rgba_hongqi:
map[y][x] = -4
elif this_image.getcolors() == rgba_boom or this_image.getcolors() == rgba_boom_red:
global gameover
gameover = 1
break
#sys.exit(0)
else:
print("無法識別圖像")
print("坐標")
print((y,x))
print("顏色")
print(this_image.getcolors())
sys.exit(0)
#print(map)
5.掃雷算法
這里我采用的最基礎(chǔ)的算法
1.首先點出一個點
2.掃描所有數(shù)字,如果周圍空白+插旗==數(shù)字,則空白均有雷,右鍵點擊空白插旗
3.掃描所有數(shù)字,如果周圍插旗==數(shù)字,則空白均沒有雷,左鍵點擊空白
4.循環(huán)2、3,如果沒有符合條件的,則隨機點擊一個白塊
#插旗
def banner():
showmap()
for y in range(blocks_y):
for x in range(blocks_x):
if 1 <= map[y][x] and map[y][x] <= 5:
boom_number = map[y][x]
block_white = 0
block_qi = 0
for yy in range(y-1,y+2):
for xx in range(x-1,x+2):
if 0 <= yy and 0 <= xx and yy < blocks_y and xx < blocks_x:
if not (yy == y and xx == x):if map[yy][xx] == 0:
block_white += 1
elif map[yy][xx] == -4:
block_qi += 1if boom_number == block_white + block_qi:for yy in range(y - 1, y + 2):
for xx in range(x - 1, x + 2):
if 0 <= yy and 0 <= xx and yy < blocks_y and xx < blocks_x:
if not (yy == y and xx == x):
if map[yy][xx] == 0:
win32api.SetCursorPos([left+xx*block_width, top+yy*block_height])
win32api.mouse_event(win32con.MOUSEEVENTF_RIGHTDOWN, 0, 0, 0, 0)
win32api.mouse_event(win32con.MOUSEEVENTF_RIGHTUP, 0, 0, 0, 0)
showmap()
#點擊白塊
def dig():
showmap()
iscluck = 0
for y in range(blocks_y):
for x in range(blocks_x):
if 1 <= map[y][x] and map[y][x] <= 5:
boom_number = map[y][x]
block_white = 0
block_qi = 0
for yy in range(y - 1, y + 2):
for xx in range(x - 1, x + 2):
if 0 <= yy and 0 <= xx and yy < blocks_y and xx < blocks_x:
if not (yy == y and xx == x):
if map[yy][xx] == 0:
block_white += 1
elif map[yy][xx] == -4:
block_qi += 1if boom_number == block_qi and block_white > 0:for yy in range(y - 1, y + 2):
for xx in range(x - 1, x + 2):
if 0 <= yy and 0 <= xx and yy < blocks_y and xx < blocks_x:
if not(yy == y and xx == x):
if map[yy][xx] == 0:
win32api.SetCursorPos([left + xx * block_width, top + yy * block_height])
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0)
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0)
iscluck = 1
if iscluck == 0:
luck()
#隨機點擊
def luck():
fl = 1
while(fl):
random_x = random.randint(0, blocks_x - 1)
random_y = random.randint(0, blocks_y - 1)
if(map[random_y][random_x] == 0):
win32api.SetCursorPos([left + random_x * block_width, top + random_y * block_height])
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0)
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0)
fl = 0
def gogo():
win32api.SetCursorPos([left, top])
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0)
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0)
showmap()
global gameover
while(1):
if(gameover == 0):
banner()
banner()
dig()
else:
gameover = 0
win32api.keybd_event(113, 0, 0, 0)
win32api.SetCursorPos([left, top])
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0)
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0)
showmap()
這個算法在初級和中級通過率都不錯,但是在高級成功率慘不忍睹,主要是沒有考慮邏輯組合以及白塊是雷的概率問題,可以對這兩個點進行改進,提高成功率。
以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
linux平臺使用Python制作BT種子并獲取BT種子信息的方法
這篇文章主要介紹了linux平臺使用Python制作BT種子并獲取BT種子信息的方法,結(jié)合實例形式詳細分析了Python BT模塊的安裝及針對BT種子文件的相關(guān)操作技巧,需要的朋友可以參考下2017-01-01
Python實現(xiàn)基于權(quán)重的隨機數(shù)2種方法
這篇文章主要介紹了Python實現(xiàn)基于權(quán)重的隨機數(shù)2種方法,本文直接給出實現(xiàn)代碼,需要的朋友可以參考下2015-04-04
Pandas數(shù)據(jù)分析之批量拆分/合并Excel
怎樣將一個大的Excel拆分,或者將很多小Excel文件合并?下面這篇文章主要給大家介紹了關(guān)于Pandas數(shù)據(jù)分析之批量拆分/合并Excel的相關(guān)資料,需要的朋友可以參考下2021-09-09
pytest利用request?fixture實現(xiàn)個性化測試需求詳解
這篇文章主要為大家詳細介紹了pytest如何利用request?fixture實現(xiàn)個性化測試需求,文中的示例代碼講解詳細,感興趣的小伙伴可以跟隨小編一起了解一下2023-09-09

