pytorch動態(tài)網(wǎng)絡(luò)以及權(quán)重共享實例
更新時間:2020年01月06日 15:41:29 作者:bob_chen_csdn
今天小編就為大家分享一篇pytorch動態(tài)網(wǎng)絡(luò)以及權(quán)重共享實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
pytorch 動態(tài)網(wǎng)絡(luò)+權(quán)值共享
pytorch以動態(tài)圖著稱,下面以一個栗子來實現(xiàn)動態(tài)網(wǎng)絡(luò)和權(quán)值共享技術(shù):
# -*- coding: utf-8 -*- import random import torch class DynamicNet(torch.nn.Module): def __init__(self, D_in, H, D_out): """ 這里構(gòu)造了幾個向前傳播過程中用到的線性函數(shù) """ super(DynamicNet, self).__init__() self.input_linear = torch.nn.Linear(D_in, H) self.middle_linear = torch.nn.Linear(H, H) self.output_linear = torch.nn.Linear(H, D_out) def forward(self, x): """ For the forward pass of the model, we randomly choose either 0, 1, 2, or 3 and reuse the middle_linear Module that many times to compute hidden layer representations. Since each forward pass builds a dynamic computation graph, we can use normal Python control-flow operators like loops or conditional statements when defining the forward pass of the model. Here we also see that it is perfectly safe to reuse the same Module many times when defining a computational graph. This is a big improvement from Lua Torch, where each Module could be used only once. 這里中間層每次向前過程中都是隨機添加0-3層,而且中間層都是使用的同一個線性層,這樣計算時,權(quán)值也是用的同一個。 """ h_relu = self.input_linear(x).clamp(min=0) for _ in range(random.randint(0, 3)): h_relu = self.middle_linear(h_relu).clamp(min=0) y_pred = self.output_linear(h_relu) return y_pred # N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = 64, 1000, 100, 10 # Create random Tensors to hold inputs and outputs x = torch.randn(N, D_in) y = torch.randn(N, D_out) # Construct our model by instantiating the class defined above model = DynamicNet(D_in, H, D_out) # Construct our loss function and an Optimizer. Training this strange model with # vanilla stochastic gradient descent is tough, so we use momentum criterion = torch.nn.MSELoss(reduction='sum') optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9) for t in range(500): # Forward pass: Compute predicted y by passing x to the model y_pred = model(x) # Compute and print loss loss = criterion(y_pred, y) print(t, loss.item()) # Zero gradients, perform a backward pass, and update the weights. optimizer.zero_grad() loss.backward() optimizer.step()
這個程序?qū)嶋H上是一種RNN結(jié)構(gòu),在執(zhí)行過程中動態(tài)的構(gòu)建計算圖
References: Pytorch Documentations.
以上這篇pytorch動態(tài)網(wǎng)絡(luò)以及權(quán)重共享實例就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python?matplotlib之折線圖的各種樣式與畫法總結(jié)
matplotlib是Python中的一個第三方庫,主要用于開發(fā)2D圖表,以漸進式、交互式的方式實現(xiàn)數(shù)據(jù)可視化,可以更直觀的呈現(xiàn)數(shù)據(jù),使數(shù)據(jù)更具說服力,下面這篇文章主要給大家介紹了關(guān)于Python?matplotlib之折線圖的各種樣式與畫法的相關(guān)資料,需要的朋友可以參考下2022-12-12