Pytorch在NLP中的簡(jiǎn)單應(yīng)用詳解
因?yàn)橹霸陧?xiàng)目中一直使用Tensorflow,最近需要處理NLP問題,對(duì)Pytorch框架還比較陌生,所以特地再學(xué)習(xí)一下pytorch在自然語言處理問題中的簡(jiǎn)單使用,這里做一個(gè)記錄。
一、Pytorch基礎(chǔ)
首先,第一步是導(dǎo)入pytorch的一系列包
import torch import torch.autograd as autograd #Autograd為Tensor所有操作提供自動(dòng)求導(dǎo)方法 import torch.nn as nn import torch.nn.functional as F import torch.optim as optim
1)Tensor張量
a) 創(chuàng)建Tensors
#tensor x = torch.Tensor([[1,2,3],[4,5,6]]) #size為2x3x4的隨機(jī)數(shù)隨機(jī)數(shù) x = torch.randn((2,3,4))
b) Tensors計(jì)算
x = torch.Tensor([[1,2],[3,4]]) y = torch.Tensor([[5,6],[7,8]]) z = x+y
c) Reshape Tensors
x = torch.randn(2,3,4) #拉直 x = x.view(-1) #4*6維度 x = x.view(4,6)
2)計(jì)算圖和自動(dòng)微分
a) Variable變量
#將Tensor變?yōu)閂ariable x = autograd.Variable(torch.Tensor([1,2,3]),requires_grad = True) #將Variable變?yōu)門ensor y = x.data
b) 反向梯度算法
x = autograd.Variable(torch.Tensor([1,2]),requires_grad=True) y = autograd.Variable(torch.Tensor([3,4]),requires_grad=True) z = x+y #求和 s = z.sum() #反向梯度傳播 s.backward() print(x.grad)
c) 線性映射
linear = nn.Linear(3,5) #三維線性映射到五維 x = autograd.Variable(torch.randn(4,3)) #輸出為(4,5)維 y = linear(x)
d) 非線性映射(激活函數(shù)的使用)
x = autograd.Variable(torch.randn(5)) #relu激活函數(shù) x_relu = F.relu(x) print(x_relu) x_soft = F.softmax(x) #softmax激活函數(shù) print(x_soft) print(x_soft.sum())
output:
Variable containing: -0.9347 -0.9882 1.3801 -0.1173 0.9317 [torch.FloatTensor of size 5] Variable containing: 0.0481 0.0456 0.4867 0.1089 0.3108 [torch.FloatTensor of size 5] Variable containing: 1 [torch.FloatTensor of size 1] Variable containing: -3.0350 -3.0885 -0.7201 -2.2176 -1.1686 [torch.FloatTensor of size 5]
二、Pytorch創(chuàng)建網(wǎng)絡(luò)
1) word embedding詞嵌入
通過nn.Embedding(m,n)實(shí)現(xiàn),m表示所有的單詞數(shù)目,n表示詞嵌入的維度。
word_to_idx = {'hello':0,'world':1} embeds = nn.Embedding(2,5) #即兩個(gè)單詞,單詞的詞嵌入維度為5 hello_idx = torch.LongTensor([word_to_idx['hello']]) hello_idx = autograd.Variable(hello_idx) hello_embed = embeds(hello_idx) print(hello_embed)
output:
Variable containing: -0.6982 0.3909 -1.0760 -1.6215 0.4429 [torch.FloatTensor of size 1x5]
2) N-Gram 語言模型
先介紹一下N-Gram語言模型,給定一個(gè)單詞序列 ,計(jì)算 ,其中 是序列的第 個(gè)單詞。
import torch import torch.nn as nn import torch.nn.functional as F import torch.autograd as autograd import torch.optim as optim from six.moves import xrange
對(duì)句子進(jìn)行分詞:
context_size = 2 embed_dim = 10 text_sequence = """When forty winters shall besiege thy brow, And dig deep trenches in thy beauty's field, Thy youth's proud livery so gazed on now, Will be a totter'd weed of small worth held: Then being asked, where all thy beauty lies, Where all the treasure of thy lusty days; To say, within thine own deep sunken eyes, Were an all-eating shame, and thriftless praise. How much more praise deserv'd thy beauty's use, If thou couldst answer 'This fair child of mine Shall sum my count, and make my old excuse,' Proving his beauty by succession thine! This were to be new made when thou art old, And see thy blood warm when thou feel'st it cold.""".split() #分詞 trigrams = [ ([text_sequence[i], text_sequence[i+1]], text_sequence[i+2]) for i in xrange(len(text_sequence) - 2) ] trigrams[:10]
分詞的形式為:
#建立vocab索引 vocab = set(text_sequence) word_to_ix = {word: i for i,word in enumerate(vocab)}
建立N-Gram Language model
#N-Gram Language model class NGramLanguageModeler(nn.Module): def __init__(self, vocab_size, embed_dim, context_size): super(NGramLanguageModeler, self).__init__() #詞嵌入 self.embedding = nn.Embedding(vocab_size, embed_dim) #兩層線性分類器 self.linear1 = nn.Linear(embed_dim*context_size, 128) self.linear2 = nn.Linear(128, vocab_size) def forward(self, input): embeds = self.embedding(input).view((1, -1)) #2,10拉直為20 out = F.relu(self.linear1(embeds)) out = F.relu(self.linear2(out)) log_probs = F.log_softmax(out) return log_probs
輸出模型看一下網(wǎng)絡(luò)結(jié)構(gòu)
#輸出模型看一下網(wǎng)絡(luò)結(jié)構(gòu) model = NGramLanguageModeler(96,10,2) print(model)
定義損失函數(shù)和優(yōu)化器
#定義損失函數(shù)以及優(yōu)化器 loss_function = nn.NLLLoss() optimizer = optim.SGD(model.parameters(),lr = 0.01) model = NGramLanguageModeler(len(vocab), embed_dim, context_size) losses = []
模型訓(xùn)練
#模型訓(xùn)練 for epoch in xrange(10): total_loss = torch.Tensor([0]) for context, target in trigrams: #1.處理數(shù)據(jù)輸入為索引向量 #print(context) #注:python3中map函數(shù)前要加上list()轉(zhuǎn)換為列表形式 context_idxs = list(map(lambda w: word_to_ix[w], context)) #print(context_idxs) context_var = autograd.Variable( torch.LongTensor(context_idxs) ) #2.梯度清零 model.zero_grad() #3.前向傳播,計(jì)算下一個(gè)單詞的概率 log_probs = model(context_var) #4.損失函數(shù) loss = loss_function(log_probs, autograd.Variable(torch.LongTensor([word_to_ix[target]]))) #反向傳播及梯度更新 loss.backward() optimizer.step() total_loss += loss.data losses.append(total_loss) print(losses)
以上這篇Pytorch在NLP中的簡(jiǎn)單應(yīng)用詳解就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
python 實(shí)現(xiàn)控制鼠標(biāo)鍵盤
這篇文章主要介紹了python 控制鼠標(biāo)鍵盤的示例,幫助大家更好的理解和學(xué)習(xí)python,感興趣的朋友可以了解下2020-11-11python查看矩陣的行列號(hào)以及維數(shù)方式
這篇文章主要介紹了python查看矩陣的行列號(hào)以及維數(shù)方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2020-05-05Python模擬簡(jiǎn)易版淘寶客服機(jī)器人的示例代碼
這篇文章主要介紹了Python模擬簡(jiǎn)易版淘寶客服機(jī)器人的示例代碼,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2021-03-03Python常用驗(yàn)證碼標(biāo)注和識(shí)別(需求分析和實(shí)現(xiàn)思路)
通過本文的介紹,我們了解了Python在常用驗(yàn)證碼標(biāo)注和識(shí)別方面的應(yīng)用,在實(shí)際項(xiàng)目中,我們可以根據(jù)具體需求選擇合適的模型和工具,實(shí)現(xiàn)高效、準(zhǔn)確的驗(yàn)證碼標(biāo)注和識(shí)別,感興趣的朋友跟隨小編一起看看吧2024-03-03python中dtypes和type()函數(shù)的區(qū)別示例詳解
type()是python內(nèi)置的函數(shù),type()返回?cái)?shù)據(jù)結(jié)構(gòu)類型(list、dict、numpy.ndarray 等),dtype返回?cái)?shù)據(jù)元素的數(shù)據(jù)類型(int、float等),這篇文章主要給大家介紹了關(guān)于python中dtypes和type()函數(shù)區(qū)別的相關(guān)資料,需要的朋友可以參考下2024-03-03