python opencv實(shí)現(xiàn)信用卡的數(shù)字識(shí)別
本項(xiàng)目利用python以及opencv實(shí)現(xiàn)信用卡的數(shù)字識(shí)別
前期準(zhǔn)備
- 導(dǎo)入工具包
- 定義功能函數(shù)
模板圖像處理
- 讀取模板圖像 cv2.imread(img)
- 灰度化處理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
- 二值化 cv2.threshold()
- 輪廓 - 輪廓
信用卡圖像處理
- 讀取信用卡圖像 cv2.imread(img)
- 灰度化處理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
- 禮帽處理 cv2.morphologyEx(gray,cv2.MORPH_TOPHAT,rectKernel)
- Sobel邊緣檢測(cè) cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
- 閉操作 cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
- 計(jì)算輪廓 cv2.findContours
- 模板檢測(cè) cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF)
原始數(shù)據(jù)展示






結(jié)果展示

1 前期準(zhǔn)備
# 導(dǎo)入工具包 # opencv讀取圖片的格式為b g r # matplotlib圖片的格式為 r g b import numpy as np import cv2 from imutils import contours import matplotlib.pyplot as plt %matplotlib inline
# 信用卡的位置 predict_card = "images/credit_card_01.png" # 模板的位置 template = "images/ocr_a_reference.png"
# 指定信用卡類型
FIRST_NUMBER = {
"3": "American Express",
"4": "Visa",
"5": "MasterCard",
"6": "Discover Card"
}
# 定義一些功能函數(shù)
# 對(duì)框進(jìn)行排序
def sort_contours(cnts, method="left-to-right"):
reverse = False
i = 0
if method == "right-to-left" or method == "bottom-to-top":
reverse = True
if method == "top-to-bottom" or method == "bottom-to-top":
i = 1
boundingBoxes = [cv2.boundingRect(c) for c in cnts] #用一個(gè)最小的矩形,把找到的形狀包起來x,y,h,w
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
key=lambda b: b[1][i], reverse=reverse))
return cnts, boundingBoxes
# 調(diào)整圖片尺寸大小
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
resized = cv2.resize(image, dim, interpolation=inter)
return resized
# 定義cv2展示函數(shù)
def cv_show(name,img):
cv2.imshow(name,img)
cv2.waitKey(0)
cv2.destroyAllWindows()
2 對(duì)模板圖像進(jìn)行預(yù)處理操作
讀取模板圖像
# 讀取模板圖像
img = cv2.imread(template)
cv_show("img",img)
plt.imshow(img)
<matplotlib.image.AxesImage at 0x2b2e04ad128>
![[外鏈圖片轉(zhuǎn)存失敗(img-bqUi8zm7-1565866397218)(output_11_1.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414831.jpg)
模板圖像轉(zhuǎn)灰度圖像
# 轉(zhuǎn)灰度圖
ref = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv_show("ref",ref)
plt.imshow(ref)
<matplotlib.image.AxesImage at 0x2b2e25d9e48>
![[外鏈圖片轉(zhuǎn)存失敗(img-OfiXb5he-1565866397219)(output_13_1.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414832.jpg)
轉(zhuǎn)為二值圖像
ref = cv2.threshold(ref,10,255,cv2.THRESH_BINARY_INV)[1]
cv_show("ref",ref)
plt.imshow(ref)
<matplotlib.image.AxesImage at 0x2b2e2832a90>
![[外鏈圖片轉(zhuǎn)存失敗(img-9ebIW8hU-1565866397220)(output_15_1.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414833.jpg)
計(jì)算輪廓
#cv2.findContours()函數(shù)接受的參數(shù)為二值圖,即黑白的(不是灰度圖),cv2.RETR_EXTERNAL只檢測(cè)外輪廓,cv2.CHAIN_APPROX_SIMPLE只保留終點(diǎn)坐標(biāo)
#返回的list中每個(gè)元素都是圖像中的一個(gè)輪廓
# 在二值化后的圖像中計(jì)算輪廓
refCnts,hierarchy = cv2.findContours(ref.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
# 在原圖上畫出輪廓
cv2.drawContours(img,refCnts,-1,(0,0,255),3)
cv_show("img",img)
plt.imshow(img)
<matplotlib.image.AxesImage at 0x2b2e256f908>
![[外鏈圖片轉(zhuǎn)存失敗(img-Dtk5KqNI-1565866397221)(output_17_1.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414834.jpg)
print(np.array(refCnts).shape)
# 排序,從左到右,從上到下
refCnts = sort_contours(refCnts,method="left-to-right")[0]
digits = {}
# 遍歷每一個(gè)輪廓
for (i, c) in enumerate(refCnts):
# 計(jì)算外接矩形并且resize成合適大小
(x, y, w, h) = cv2.boundingRect(c)
roi = ref[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88))
# 每一個(gè)數(shù)字對(duì)應(yīng)每一個(gè)模板
digits[i] = roi
(10,)
3 對(duì)信用卡進(jìn)行處理
初始化卷積核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3)) sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
讀取信用卡
image = cv2.imread(predict_card)
cv_show("image",image)
plt.imshow(image)
<matplotlib.image.AxesImage at 0x2b2e294c9b0>
![[外鏈圖片轉(zhuǎn)存失敗(img-WMVg6Luz-1565866397225)(output_23_1.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414935.jpg)
對(duì)圖像進(jìn)行預(yù)處理操作
# 先對(duì)圖像進(jìn)行resize操作
image = resize(image,width=300)
# 灰度化處理
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
cv_show("gray",gray)
plt.imshow(gray)
<matplotlib.image.AxesImage at 0x2b2e255d828>
![[外鏈圖片轉(zhuǎn)存失敗(img-OLdT4boh-1565866397226)(output_25_1.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414936.jpg)
對(duì)圖像禮帽操作
- 禮帽 = 原始輸入-開運(yùn)算結(jié)果
- 開運(yùn)算:先腐蝕,再膨脹
- 突出更明亮的區(qū)域
tophat = cv2.morphologyEx(gray,cv2.MORPH_TOPHAT,rectKernel)
cv_show("tophat",tophat)
plt.imshow(tophat)
<matplotlib.image.AxesImage at 0x2b2eb008e48>
![[外鏈圖片轉(zhuǎn)存失敗(img-0yzMkO55-1565866397227)(output_28_1.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414937.jpg)
用Sobel算子邊緣檢測(cè)
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")
print (np.array(gradX).shape)
cv_show("gradX",gradX)
plt.imshow(gradX)
(189, 300) <matplotlib.image.AxesImage at 0x2b2e0797400>
![[外鏈圖片轉(zhuǎn)存失敗(img-uoAHXkVD-1565866397232)(output_30_2.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414938.jpg)
對(duì)圖像閉操作
- 閉操作:先膨脹,再腐蝕
- 可以將數(shù)字連在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show("gradX",gradX)
plt.imshow(gradX)
<matplotlib.image.AxesImage at 0x2b2e097cc88>
![[外鏈圖片轉(zhuǎn)存失敗(img-WHOvOarz-1565866397234)(output_33_1.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414939.jpg)
#THRESH_OTSU會(huì)自動(dòng)尋找合適的閾值,適合雙峰,需把閾值參數(shù)設(shè)置為0
thresh = cv2.threshold(gradX, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show("thresh",thresh)
plt.imshow(thresh)
<matplotlib.image.AxesImage at 0x2b2e24a0dd8>
![[外鏈圖片轉(zhuǎn)存失敗(img-rJfxoo8f-1565866397237)(output_34_1.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414940.jpg)
# 再進(jìn)行一次閉操作
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再來一個(gè)閉操作
cv_show("thresh",thresh)
plt.imshow(thresh)
<matplotlib.image.AxesImage at 0x2b2e25fe748>
![[外鏈圖片轉(zhuǎn)存失敗(img-DQjqCRvK-1565866397240)(output_35_1.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414941.jpg)
計(jì)算輪廓
threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)
cv_show("img",cur_img)
plt.imshow(cur_img)
<matplotlib.image.AxesImage at 0x2b2eb17c780>
![[外鏈圖片轉(zhuǎn)存失敗(img-B5JW2tVN-1565866397260)(output_37_1.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414942.jpg)
locs = []
# 遍歷輪廓
for (i, c) in enumerate(cnts):
# 計(jì)算矩形
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h)
# 選擇合適的區(qū)域,根據(jù)實(shí)際任務(wù)來,這里的基本都是四個(gè)數(shù)字一組
if ar > 2.5 and ar < 4.0:
if (w > 40 and w < 55) and (h > 10 and h < 20):
#符合的留下來
locs.append((x, y, w, h))
# 將符合的輪廓從左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = []
模板匹配
# 遍歷每一個(gè)輪廓中的數(shù)字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
# initialize the list of group digits
groupOutput = []
# 根據(jù)坐標(biāo)提取每一個(gè)組
group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
cv_show("group",group)
# 預(yù)處理
group = cv2.threshold(group, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show("group",group)
# 計(jì)算每一組的輪廓
digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
digitCnts = contours.sort_contours(digitCnts,method="left-to-right")[0]
# 計(jì)算每一組中的每一個(gè)數(shù)值
for c in digitCnts:
# 找到當(dāng)前數(shù)值的輪廓,resize成合適的的大小
(x, y, w, h) = cv2.boundingRect(c)
roi = group[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88))
cv_show("roi",roi)
# 計(jì)算匹配得分
scores = []
# 在模板中計(jì)算每一個(gè)得分
for (digit, digitROI) in digits.items():
# 模板匹配
result = cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF)
(_, score, _, _) = cv2.minMaxLoc(result)
scores.append(score)
# 得到最合適的數(shù)字
groupOutput.append(str(np.argmax(scores)))
# 畫出來
cv2.rectangle(image, (gX - 5, gY - 5),(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
cv2.putText(image, "".join(groupOutput), (gX, gY - 15),cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)
# 得到結(jié)果
output.extend(groupOutput)
# 打印結(jié)果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv_show("Image",image)
plt.imshow(image)
Credit Card Type: Visa Credit Card #: 4000123456789010 <matplotlib.image.AxesImage at 0x2b2eb040748>
![[外鏈圖片轉(zhuǎn)存失敗(img-EkSaLNgx-1565866397264)(output_41_2.jpg)]](http://img.jbzj.com/file_images/article/202001/2020011211414943.jpg)
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
- Python-OpenCV實(shí)戰(zhàn):利用 KNN 算法識(shí)別手寫數(shù)字
- OpenCV簡(jiǎn)單標(biāo)準(zhǔn)數(shù)字識(shí)別的完整實(shí)例
- 如何基于opencv實(shí)現(xiàn)簡(jiǎn)單的數(shù)字識(shí)別
- 詳解Python OpenCV數(shù)字識(shí)別案例
- python基于OpenCV模板匹配識(shí)別圖片中的數(shù)字
- Python+Opencv實(shí)現(xiàn)數(shù)字識(shí)別的示例代碼
- opencv+python識(shí)別七段數(shù)碼顯示器的數(shù)字(數(shù)字識(shí)別)
相關(guān)文章
Python標(biāo)準(zhǔn)庫(kù)os常用函數(shù)和屬性詳解
os模塊是Python標(biāo)準(zhǔn)庫(kù)中的一個(gè)用于訪問操作系統(tǒng)相關(guān)功能的模塊,os模塊提供了一種可移植的使用操作系統(tǒng)功能的方法,本文給大家介紹下?OS標(biāo)準(zhǔn)庫(kù)常用函數(shù)和屬性,感興趣的朋友跟隨小編一起看看吧2022-11-11
python加密解密庫(kù)cryptography使用openSSL生成的密匙加密解密
這篇文章主要介紹了python加密解密庫(kù)cryptography使用openSSL生成的密匙加密解密,需要的朋友可以參考下2020-02-02
對(duì)Django 轉(zhuǎn)發(fā)和重定向的實(shí)例詳解
今天小編就為大家分享一篇對(duì)Django 轉(zhuǎn)發(fā)和重定向的實(shí)例詳解,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-08-08
python3中http協(xié)議提供文件服務(wù)器功能詳解
http協(xié)議是互聯(lián)網(wǎng)的通用基礎(chǔ)協(xié)議,也可以利用其來開發(fā)文件服務(wù)器,給客戶提供文件瀏覽,查看,下載,上傳等功能,這篇文章主要介紹了python3中http協(xié)議提供文件服務(wù)器功能,需要的朋友可以參考下2023-06-06
Python鍵鼠操作自動(dòng)化庫(kù)PyAutoGUI簡(jiǎn)介(小結(jié))
這篇文章主要介紹了Python鍵鼠操作自動(dòng)化庫(kù)PyAutoGUI簡(jiǎn)介,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-05-05
python學(xué)習(xí)入門細(xì)節(jié)知識(shí)點(diǎn)
我們整理了關(guān)于python入門學(xué)習(xí)的一些細(xì)節(jié)知識(shí)點(diǎn),對(duì)于學(xué)習(xí)python的初學(xué)者很有用,一起學(xué)習(xí)下。2018-03-03

