python opencv實現(xiàn)信用卡的數(shù)字識別
本項目利用python以及opencv實現(xiàn)信用卡的數(shù)字識別
前期準(zhǔn)備
- 導(dǎo)入工具包
- 定義功能函數(shù)
模板圖像處理
- 讀取模板圖像 cv2.imread(img)
- 灰度化處理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
- 二值化 cv2.threshold()
- 輪廓 - 輪廓
信用卡圖像處理
- 讀取信用卡圖像 cv2.imread(img)
- 灰度化處理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
- 禮帽處理 cv2.morphologyEx(gray,cv2.MORPH_TOPHAT,rectKernel)
- Sobel邊緣檢測 cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
- 閉操作 cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
- 計算輪廓 cv2.findContours
- 模板檢測 cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF)
原始數(shù)據(jù)展示
結(jié)果展示
1 前期準(zhǔn)備
# 導(dǎo)入工具包 # opencv讀取圖片的格式為b g r # matplotlib圖片的格式為 r g b import numpy as np import cv2 from imutils import contours import matplotlib.pyplot as plt %matplotlib inline
# 信用卡的位置 predict_card = "images/credit_card_01.png" # 模板的位置 template = "images/ocr_a_reference.png"
# 指定信用卡類型 FIRST_NUMBER = { "3": "American Express", "4": "Visa", "5": "MasterCard", "6": "Discover Card" }
# 定義一些功能函數(shù) # 對框進行排序 def sort_contours(cnts, method="left-to-right"): reverse = False i = 0 if method == "right-to-left" or method == "bottom-to-top": reverse = True if method == "top-to-bottom" or method == "bottom-to-top": i = 1 boundingBoxes = [cv2.boundingRect(c) for c in cnts] #用一個最小的矩形,把找到的形狀包起來x,y,h,w (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes), key=lambda b: b[1][i], reverse=reverse)) return cnts, boundingBoxes # 調(diào)整圖片尺寸大小 def resize(image, width=None, height=None, inter=cv2.INTER_AREA): dim = None (h, w) = image.shape[:2] if width is None and height is None: return image if width is None: r = height / float(h) dim = (int(w * r), height) else: r = width / float(w) dim = (width, int(h * r)) resized = cv2.resize(image, dim, interpolation=inter) return resized # 定義cv2展示函數(shù) def cv_show(name,img): cv2.imshow(name,img) cv2.waitKey(0) cv2.destroyAllWindows()
2 對模板圖像進行預(yù)處理操作
讀取模板圖像
# 讀取模板圖像 img = cv2.imread(template) cv_show("img",img) plt.imshow(img)
<matplotlib.image.AxesImage at 0x2b2e04ad128>
模板圖像轉(zhuǎn)灰度圖像
# 轉(zhuǎn)灰度圖 ref = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) cv_show("ref",ref) plt.imshow(ref)
<matplotlib.image.AxesImage at 0x2b2e25d9e48>
轉(zhuǎn)為二值圖像
ref = cv2.threshold(ref,10,255,cv2.THRESH_BINARY_INV)[1] cv_show("ref",ref) plt.imshow(ref)
<matplotlib.image.AxesImage at 0x2b2e2832a90>
計算輪廓
#cv2.findContours()函數(shù)接受的參數(shù)為二值圖,即黑白的(不是灰度圖),cv2.RETR_EXTERNAL只檢測外輪廓,cv2.CHAIN_APPROX_SIMPLE只保留終點坐標(biāo) #返回的list中每個元素都是圖像中的一個輪廓 # 在二值化后的圖像中計算輪廓 refCnts,hierarchy = cv2.findContours(ref.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) # 在原圖上畫出輪廓 cv2.drawContours(img,refCnts,-1,(0,0,255),3) cv_show("img",img) plt.imshow(img)
<matplotlib.image.AxesImage at 0x2b2e256f908>
print(np.array(refCnts).shape) # 排序,從左到右,從上到下 refCnts = sort_contours(refCnts,method="left-to-right")[0] digits = {} # 遍歷每一個輪廓 for (i, c) in enumerate(refCnts): # 計算外接矩形并且resize成合適大小 (x, y, w, h) = cv2.boundingRect(c) roi = ref[y:y + h, x:x + w] roi = cv2.resize(roi, (57, 88)) # 每一個數(shù)字對應(yīng)每一個模板 digits[i] = roi
(10,)
3 對信用卡進行處理
初始化卷積核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3)) sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
讀取信用卡
image = cv2.imread(predict_card) cv_show("image",image) plt.imshow(image)
<matplotlib.image.AxesImage at 0x2b2e294c9b0>
對圖像進行預(yù)處理操作
# 先對圖像進行resize操作 image = resize(image,width=300) # 灰度化處理 gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) cv_show("gray",gray) plt.imshow(gray)
<matplotlib.image.AxesImage at 0x2b2e255d828>
對圖像禮帽操作
- 禮帽 = 原始輸入-開運算結(jié)果
- 開運算:先腐蝕,再膨脹
- 突出更明亮的區(qū)域
tophat = cv2.morphologyEx(gray,cv2.MORPH_TOPHAT,rectKernel) cv_show("tophat",tophat) plt.imshow(tophat)
<matplotlib.image.AxesImage at 0x2b2eb008e48>
用Sobel算子邊緣檢測
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1) gradX = np.absolute(gradX) (minVal, maxVal) = (np.min(gradX), np.max(gradX)) gradX = (255 * ((gradX - minVal) / (maxVal - minVal))) gradX = gradX.astype("uint8") print (np.array(gradX).shape) cv_show("gradX",gradX) plt.imshow(gradX)
(189, 300) <matplotlib.image.AxesImage at 0x2b2e0797400>
對圖像閉操作
- 閉操作:先膨脹,再腐蝕
- 可以將數(shù)字連在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel) cv_show("gradX",gradX) plt.imshow(gradX)
<matplotlib.image.AxesImage at 0x2b2e097cc88>
#THRESH_OTSU會自動尋找合適的閾值,適合雙峰,需把閾值參數(shù)設(shè)置為0 thresh = cv2.threshold(gradX, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] cv_show("thresh",thresh) plt.imshow(thresh)
<matplotlib.image.AxesImage at 0x2b2e24a0dd8>
# 再進行一次閉操作 thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再來一個閉操作 cv_show("thresh",thresh) plt.imshow(thresh)
<matplotlib.image.AxesImage at 0x2b2e25fe748>
計算輪廓
threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) cnts = threshCnts cur_img = image.copy() cv2.drawContours(cur_img,cnts,-1,(0,0,255),3) cv_show("img",cur_img) plt.imshow(cur_img)
<matplotlib.image.AxesImage at 0x2b2eb17c780>
locs = [] # 遍歷輪廓 for (i, c) in enumerate(cnts): # 計算矩形 (x, y, w, h) = cv2.boundingRect(c) ar = w / float(h) # 選擇合適的區(qū)域,根據(jù)實際任務(wù)來,這里的基本都是四個數(shù)字一組 if ar > 2.5 and ar < 4.0: if (w > 40 and w < 55) and (h > 10 and h < 20): #符合的留下來 locs.append((x, y, w, h)) # 將符合的輪廓從左到右排序 locs = sorted(locs, key=lambda x:x[0]) output = []
模板匹配
# 遍歷每一個輪廓中的數(shù)字 for (i, (gX, gY, gW, gH)) in enumerate(locs): # initialize the list of group digits groupOutput = [] # 根據(jù)坐標(biāo)提取每一個組 group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5] cv_show("group",group) # 預(yù)處理 group = cv2.threshold(group, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] cv_show("group",group) # 計算每一組的輪廓 digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) digitCnts = contours.sort_contours(digitCnts,method="left-to-right")[0] # 計算每一組中的每一個數(shù)值 for c in digitCnts: # 找到當(dāng)前數(shù)值的輪廓,resize成合適的的大小 (x, y, w, h) = cv2.boundingRect(c) roi = group[y:y + h, x:x + w] roi = cv2.resize(roi, (57, 88)) cv_show("roi",roi) # 計算匹配得分 scores = [] # 在模板中計算每一個得分 for (digit, digitROI) in digits.items(): # 模板匹配 result = cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF) (_, score, _, _) = cv2.minMaxLoc(result) scores.append(score) # 得到最合適的數(shù)字 groupOutput.append(str(np.argmax(scores))) # 畫出來 cv2.rectangle(image, (gX - 5, gY - 5),(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1) cv2.putText(image, "".join(groupOutput), (gX, gY - 15),cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2) # 得到結(jié)果 output.extend(groupOutput)
# 打印結(jié)果 print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]])) print("Credit Card #: {}".format("".join(output))) cv_show("Image",image) plt.imshow(image)
Credit Card Type: Visa Credit Card #: 4000123456789010 <matplotlib.image.AxesImage at 0x2b2eb040748>
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Python標(biāo)準(zhǔn)庫os常用函數(shù)和屬性詳解
os模塊是Python標(biāo)準(zhǔn)庫中的一個用于訪問操作系統(tǒng)相關(guān)功能的模塊,os模塊提供了一種可移植的使用操作系統(tǒng)功能的方法,本文給大家介紹下?OS標(biāo)準(zhǔn)庫常用函數(shù)和屬性,感興趣的朋友跟隨小編一起看看吧2022-11-11python加密解密庫cryptography使用openSSL生成的密匙加密解密
這篇文章主要介紹了python加密解密庫cryptography使用openSSL生成的密匙加密解密,需要的朋友可以參考下2020-02-02對Django 轉(zhuǎn)發(fā)和重定向的實例詳解
今天小編就為大家分享一篇對Django 轉(zhuǎn)發(fā)和重定向的實例詳解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-08-08python3中http協(xié)議提供文件服務(wù)器功能詳解
http協(xié)議是互聯(lián)網(wǎng)的通用基礎(chǔ)協(xié)議,也可以利用其來開發(fā)文件服務(wù)器,給客戶提供文件瀏覽,查看,下載,上傳等功能,這篇文章主要介紹了python3中http協(xié)議提供文件服務(wù)器功能,需要的朋友可以參考下2023-06-06Python鍵鼠操作自動化庫PyAutoGUI簡介(小結(jié))
這篇文章主要介紹了Python鍵鼠操作自動化庫PyAutoGUI簡介,文中通過示例代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-05-05