欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

TensorFlow dataset.shuffle、batch、repeat的使用詳解

 更新時間:2020年01月21日 09:24:25   作者:sgyuanshi  
今天小編就為大家分享一篇TensorFlow dataset.shuffle、batch、repeat的使用詳解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧

直接看代碼例子,有詳細(xì)注釋??!

import tensorflow as tf
import numpy as np


d = np.arange(0,60).reshape([6, 10])

# 將array轉(zhuǎn)化為tensor
data = tf.data.Dataset.from_tensor_slices(d)

# 從data數(shù)據(jù)集中按順序抽取buffer_size個樣本放在buffer中,然后打亂buffer中的樣本
# buffer中樣本個數(shù)不足buffer_size,繼續(xù)從data數(shù)據(jù)集中安順序填充至buffer_size,
# 此時會再次打亂
data = data.shuffle(buffer_size=3)

# 每次從buffer中抽取4個樣本
data = data.batch(4)

# 將data數(shù)據(jù)集重復(fù),其實(shí)就是2個epoch數(shù)據(jù)集
data = data.repeat(2)

# 構(gòu)造獲取數(shù)據(jù)的迭代器
iters = data.make_one_shot_iterator()

# 每次從迭代器中獲取一批數(shù)據(jù)
batch = iters.get_next()

sess = tf.Session()

sess.run(batch)
# 數(shù)據(jù)集完成遍歷完之后,繼續(xù)抽取的話會報錯:OutOfRangeError
In [21]: d
Out[21]: 
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
  [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
  [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
  [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
  [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
  [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])
In [22]: sess.run(batch)
Out[22]: 
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
  [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
  [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
  [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]])

In [23]: sess.run(batch)
Out[23]: 
array([[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
  [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

從輸出結(jié)果可以看出:

shuffle是按順序?qū)?shù)據(jù)放入buffer里面的;

當(dāng)repeat函數(shù)在shuffle之后的話,是將一個epoch的數(shù)據(jù)集抽取完畢,再進(jìn)行下一個epoch的。

那么,當(dāng)repeat函數(shù)在shuffle之前會怎么樣呢?如下:

data = data.repeat(2)

data = data.shuffle(buffer_size=3)

data = data.batch(4)
In [25]: sess.run(batch)
Out[25]: 
array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
  [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
  [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
  [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])

In [26]: sess.run(batch)
Out[26]: 
array([[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
  [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
  [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
  [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]])

In [27]: sess.run(batch)
Out[27]: 
array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
  [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
  [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
  [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])

可以看出,其實(shí)它就是先將數(shù)據(jù)集復(fù)制一遍,然后把兩個epoch當(dāng)成同一個新的數(shù)據(jù)集,一直shuffle和batch下去。

以上這篇TensorFlow dataset.shuffle、batch、repeat的使用詳解就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。

相關(guān)文章

最新評論