tensorflow模型保存、加載之變量重命名實例
話不多說,干就完了。
變量重命名的用處?
簡單定義:簡單來說就是將模型A中的參數(shù)parameter_A賦給模型B中的parameter_B
使用場景:當需要使用已經(jīng)訓練好的模型參數(shù),尤其是使用別人訓練好的模型參數(shù)時,往往別人模型中的參數(shù)命名方式與自己當前的命名方式不同,所以在加載模型參數(shù)時需要對參數(shù)進行重命名,使得代碼更簡潔易懂。
實現(xiàn)方法:
1)、模型保存
import os import tensorflow as tf weights = tf.Variable(initial_value=tf.truncated_normal(shape=[1024, 2], mean=0.0, stddev=0.1), dtype=tf.float32, name="weights") biases = tf.Variable(initial_value=tf.zeros(shape=[2]), dtype=tf.float32, name="biases") weights_2 = tf.Variable(initial_value=weights.initialized_value(), dtype=tf.float32, name="weights_2") # saver checkpoint if os.path.exists("checkpoints") is False: os.makedirs("checkpoints") saver = tf.train.Saver() with tf.Session() as sess: init_op = [tf.global_variables_initializer()] sess.run(init_op) saver.save(sess=sess, save_path="checkpoints/variable.ckpt")
2)、模型加載(變量名稱保持不變)
import tensorflow as tf from matplotlib import pyplot as plt import os current_path = os.path.dirname(os.path.abspath(__file__)) def restore_variable(sess): # need not initilize variable, but need to define the same variable like checkpoint weights = tf.Variable(initial_value=tf.truncated_normal(shape=[1024, 2], mean=0.0, stddev=0.1), dtype=tf.float32, name="weights") biases = tf.Variable(initial_value=tf.zeros(shape=[2]), dtype=tf.float32, name="biases") weights_2 = tf.Variable(initial_value=weights.initialized_value(), dtype=tf.float32, name="weights_2") saver = tf.train.Saver() ckpt_path = os.path.join(current_path, "checkpoints", "variable.ckpt") saver.restore(sess=sess, save_path=ckpt_path) weights_val, weights_2_val = sess.run( [ tf.reshape(weights, shape=[2048]), tf.reshape(weights_2, shape=[2048]) ] ) plt.subplot(1, 2, 1) plt.scatter([i for i in range(len(weights_val))], weights_val) plt.subplot(1, 2, 2) plt.scatter([i for i in range(len(weights_2_val))], weights_2_val) plt.show() if __name__ == '__main__': with tf.Session() as sess: restore_variable(sess)
3)、模型加載(變量重命名)
import tensorflow as tf from matplotlib import pyplot as plt import os current_path = os.path.dirname(os.path.abspath(__file__)) def restore_variable_renamed(sess): conv1_w = tf.Variable(initial_value=tf.truncated_normal(shape=[1024, 2], mean=0.0, stddev=0.1), dtype=tf.float32, name="conv1_w") conv1_b = tf.Variable(initial_value=tf.zeros(shape=[2]), dtype=tf.float32, name="conv1_b") conv2_w = tf.Variable(initial_value=conv1_w.initialized_value(), dtype=tf.float32, name="conv2_w") # variable named 'weights' in ckpt assigned to current variable conv1_w # variable named 'biases' in ckpt assigned to current variable conv1_b # variable named 'weights_2' in ckpt assigned to current variable conv2_w saver = tf.train.Saver({ "weights": conv1_w, "biases": conv1_b, "weights_2": conv2_w }) ckpt_path = os.path.join(current_path, "checkpoints", "variable.ckpt") saver.restore(sess=sess, save_path=ckpt_path) conv1_w__val, conv2_w__val = sess.run( [ tf.reshape(conv1_w, shape=[2048]), tf.reshape(conv2_w, shape=[2048]) ] ) plt.subplot(1, 2, 1) plt.scatter([i for i in range(len(conv1_w__val))], conv1_w__val) plt.subplot(1, 2, 2) plt.scatter([i for i in range(len(conv2_w__val))], conv2_w__val) plt.show() if __name__ == '__main__': with tf.Session() as sess: restore_variable_renamed(sess)
總結:
# 之前模型中叫 'weights'的變量賦值給當前的conv1_w變量
# 之前模型中叫 'biases' 的變量賦值給當前的conv1_b變量
# 之前模型中叫 'weights_2'的變量賦值給當前的conv2_w變量
saver = tf.train.Saver({
"weights": conv1_w,
"biases": conv1_b,
"weights_2": conv2_w
})
以上這篇tensorflow模型保存、加載之變量重命名實例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
基于pytorch實現(xiàn)對圖片進行數(shù)據(jù)增強
圖像數(shù)據(jù)增強是一種在訓練機器學習和深度學習模型時常用的策略,尤其是在計算機視覺領域,具體而言,它通過創(chuàng)建和原始圖像稍有不同的新圖像來擴大訓練集,本文給大家介紹了如何基于pytorch實現(xiàn)對圖片進行數(shù)據(jù)增強,需要的朋友可以參考下2024-01-01Blueprint實現(xiàn)路由分組及Flask中session的使用詳解
這篇文章主要為大家介紹了Blueprint實現(xiàn)路由分組及Flask中session的使用詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2023-11-11Python使用xpath對解析內容進行數(shù)據(jù)提取
XPath 使用路徑表達式來選取HTML/ XML 文檔中的節(jié)點或節(jié)點集,節(jié)點是通過沿著路徑 (path) 或者步 (steps) 來選取的,本文將給大家介紹Python使用xpath對解析內容進行數(shù)據(jù)提取的方法,需要的朋友可以參考下2024-05-05Python實戰(zhàn)項目之MySQL tkinter pyinstaller實現(xiàn)學生管理系統(tǒng)
讀萬卷書不如行萬里路,只學書上的理論是遠遠不夠的,只有在實戰(zhàn)中才能獲得能力的提升,本篇文章手把手帶你用MySQL、tkinter、 pyinstaller實現(xiàn)一個學生管理系統(tǒng),大家可以通過案例查缺補漏,提升水平2021-10-10