Python抓新型冠狀病毒肺炎疫情數(shù)據(jù)并繪制全國(guó)疫情分布的代碼實(shí)例
運(yùn)行結(jié)果(2020-2-4日數(shù)據(jù))
數(shù)據(jù)來源
news.qq.com/zt2020/page/feiyan.htm
抓包分析
日?qǐng)?bào)數(shù)據(jù)格式
"chinaDayList": [{ "date": "01.13", "confirm": "41", "suspect": "0", "dead": "1", "heal": "0" }, { "date": "01.14", "confirm": "41", "suspect": "0", "dead": "1", "heal": "0" }, { "date": "01.15", "confirm": "41", "suspect": "0", "dead": "2", "heal": "5" }, { 。。。。。。
全國(guó)各地疫情數(shù)據(jù)格式
"lastUpdateTime": "2020-02-04 12:43:19", "areaTree": [{ "name": "中國(guó)", "children": [{ "name": "湖北", "children": [{ "name": "武漢", "total": { "confirm": 6384, "suspect": 0, "dead": 313, "heal": 303 }, "today": { "confirm": 1242, "suspect": 0, "dead": 48, "heal": 79 } }, { "name": "黃岡", "total": { "confirm": 1422, "suspect": 0, "dead": 19, "heal": 36 }, "today": { "confirm": 176, "suspect": 0, "dead": 2, "heal": 9 } }, { 。。。。。。
地圖數(shù)據(jù)
github.com/dongli/china-shapefiles
代碼實(shí)現(xiàn)
#%% import time, json, requests from datetime import datetime import matplotlib import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib.font_manager import FontProperties from mpl_toolkits.basemap import Basemap from matplotlib.patches import Polygon import numpy as np import jsonpath plt.rcParams['font.sans-serif'] = ['SimHei'] # 用來正常顯示中文標(biāo)簽 plt.rcParams['axes.unicode_minus'] = False # 用來正常顯示負(fù)號(hào) #%% # 全國(guó)疫情地區(qū)分布(省級(jí)確診病例) def catch_cn_disease_dis(): timestamp = '%d'%int(time.time()*1000) url_area = ('https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' '&callback=&_=') + timestamp world_data = json.loads(requests.get(url=url_area).json()['data']) china_data = jsonpath.jsonpath(world_data, expr='$.areaTree[0].children[*]') list_province = jsonpath.jsonpath(china_data, expr='$[*].name') list_province_confirm = jsonpath.jsonpath(china_data, expr='$[*].total.confirm') dic_province_confirm = dict(zip(list_province, list_province_confirm)) return dic_province_confirm area_data = catch_cn_disease_dis() print(area_data) #%% # 抓取全國(guó)疫情按日期分布 ''' 數(shù)據(jù)源: "chinaDayList": [{ "date": "01.13", "confirm": "41", "suspect": "0", "dead": "1", "heal": "0" }, { "date": "01.14", "confirm": "41", "suspect": "0", "dead": "1", "heal": "0" } ''' def catch_cn_daily_dis(): timestamp = '%d'%int(time.time()*1000) url_area = ('https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' '&callback=&_=') + timestamp world_data = json.loads(requests.get(url=url_area).json()['data']) china_daily_data = jsonpath.jsonpath(world_data, expr='$.chinaDayList[*]') # 其實(shí)沒必要單獨(dú)用list存儲(chǔ),json可讀性已經(jīng)很好了;這里這樣寫僅是為了少該點(diǎn)老版本的代碼 list_dates = list() # 日期 list_confirms = list() # 確診 list_suspects = list() # 疑似 list_deads = list() # 死亡 list_heals = list() # 治愈 for item in china_daily_data: month, day = item['date'].split('.') list_dates.append(datetime.strptime('2020-%s-%s'%(month, day), '%Y-%m-%d')) list_confirms.append(int(item['confirm'])) list_suspects.append(int(item['suspect'])) list_deads.append(int(item['dead'])) list_heals.append(int(item['heal'])) return list_dates, list_confirms, list_suspects, list_deads, list_heals list_date, list_confirm, list_suspect, list_dead, list_heal = catch_cn_daily_dis() print(list_date) #%% # 繪制每日確診和死亡數(shù)據(jù) def plot_cn_daily(): # list_date, list_confirm, list_suspect, list_dead, list_heal = catch_cn_daily_dis() plt.figure('novel coronavirus', facecolor='#f4f4f4', figsize=(10, 8)) plt.title('全國(guó)新型冠狀病毒疫情曲線', fontsize=20) print('日期元素?cái)?shù):', len(list_date), "\n確診元素?cái)?shù):", len(list_confirm)) plt.plot(list_date, list_confirm, label='確診') plt.plot(list_date, list_suspect, label='疑似') plt.plot(list_date, list_dead, label='死亡') plt.plot(list_date, list_heal, label='治愈') xaxis = plt.gca().xaxis # x軸刻度為1天 xaxis.set_major_locator(matplotlib.dates.DayLocator(bymonthday=None, interval=1, tz=None)) xaxis.set_major_formatter(mdates.DateFormatter('%m月%d日')) plt.gcf().autofmt_xdate() # 優(yōu)化標(biāo)注(自動(dòng)傾斜) plt.grid(linestyle=':') # 顯示網(wǎng)格 plt.xlabel('日期',fontsize=16) plt.ylabel('人數(shù)',fontsize=16) plt.legend(loc='best') plot_cn_daily() #%% # 繪制全國(guó)省級(jí)行政區(qū)域確診分布圖 count_iter = 0 def plot_cn_disease_dis(): # area_data = catch_area_distribution() font = FontProperties(fname='res/coure.fon', size=14) # 經(jīng)緯度范圍 lat_min = 10 # 緯度 lat_max = 60 lon_min = 70 # 經(jīng)度 lon_max = 140 # 標(biāo)簽顏色和文本 legend_handles = [ matplotlib.patches.Patch(color='#7FFFAA', alpha=1, linewidth=0), matplotlib.patches.Patch(color='#ffaa85', alpha=1, linewidth=0), matplotlib.patches.Patch(color='#ff7b69', alpha=1, linewidth=0), matplotlib.patches.Patch(color='#bf2121', alpha=1, linewidth=0), matplotlib.patches.Patch(color='#7f1818', alpha=1, linewidth=0), ] legend_labels = ['0人', '1-10人', '11-100人', '101-1000人', '>1000人'] fig = plt.figure(facecolor='#f4f4f4', figsize=(10, 8)) # 新建區(qū)域 axes = fig.add_axes((0.1, 0.1, 0.8, 0.8)) # left, bottom, width, height, figure的百分比,從figure 10%的位置開始繪制, 寬高是figure的80% axes.set_title('全國(guó)新型冠狀病毒疫情地圖(確診)', fontsize=20) # fontproperties=font 設(shè)置失敗 # bbox_to_anchor(num1, num2), num1用于控制legend的左右移動(dòng),值越大越向右邊移動(dòng),num2用于控制legend的上下移動(dòng),值越大,越向上移動(dòng)。 axes.legend(legend_handles, legend_labels, bbox_to_anchor=(0.5, -0.11), loc='lower center', ncol=5) # prop=font china_map = Basemap(llcrnrlon=lon_min, urcrnrlon=lon_max, llcrnrlat=lat_min, urcrnrlat=lat_max, resolution='l', ax=axes) # labels=[True,False,False,False] 分別代表 [left,right,top,bottom] china_map.drawparallels(np.arange(lat_min,lat_max,10), labels=[1,0,0,0]) # 畫經(jīng)度線 china_map.drawmeridians(np.arange(lon_min,lon_max,10), labels=[0,0,0,1]) # 畫緯度線 china_map.drawcoastlines(color='black') # 洲際線 china_map.drawcountries(color='red') # 國(guó)界線 china_map.drawmapboundary(fill_color = 'aqua') # 畫中國(guó)國(guó)內(nèi)省界和九段線 china_map.readshapefile('res/china-shapefiles-master/china', 'province', drawbounds=True) china_map.readshapefile('res/china-shapefiles-master/china_nine_dotted_line', 'section', drawbounds=True) global count_iter count_iter = 0 # 內(nèi)外循環(huán)不能對(duì)調(diào),地圖中每個(gè)省的數(shù)據(jù)有多條(繪制每一個(gè)shape,可以去查一下第一條“臺(tái)灣省”的數(shù)據(jù)) for info, shape in zip(china_map.province_info, china_map.province): pname = info['OWNER'].strip('\x00') fcname = info['FCNAME'].strip('\x00') if pname != fcname: # 不繪制海島 continue is_reported = False # 西藏沒有疫情,數(shù)據(jù)源就不取不到其數(shù)據(jù) for prov_name in area_data.keys(): count_iter += 1 if prov_name in pname: is_reported = True if area_data[prov_name] == 0: color = '#f0f0f0' elif area_data[prov_name] <= 10: color = '#ffaa85' elif area_data[prov_name] <= 100: color = '#ff7b69' elif area_data[prov_name] <= 1000: color = '#bf2121' else: color = '#7f1818' break if not is_reported: color = '#7FFFAA' poly = Polygon(shape, facecolor=color, edgecolor=color) axes.add_patch(poly) plot_cn_disease_dis() print('迭代次數(shù)', count_iter)
以上就是腳本之家小編整理的全部知識(shí)點(diǎn)內(nèi)容,感謝大家的學(xué)習(xí)和對(duì)腳本之家的支持。
相關(guān)文章
Python?time模塊之時(shí)間戳與結(jié)構(gòu)化時(shí)間的使用
這篇文章主要為大家詳細(xì)介紹了Python中的time模塊以及如何利用time模塊實(shí)現(xiàn)時(shí)間戳與結(jié)構(gòu)化時(shí)間,文中的示例代碼講解詳細(xì),需要的可以參考一下2022-06-06Django JSONField的自動(dòng)轉(zhuǎn)換思路詳解(django自定義模型字段)
如果想實(shí)現(xiàn)JSONField的自動(dòng)轉(zhuǎn)換,可以使用Django REST framework的JSONField,或者自定義一個(gè)字段類并覆蓋from_db_value()和get_prep_value()方法來實(shí)現(xiàn)這個(gè)功能,這篇文章主要介紹了Django JSONField的自動(dòng)轉(zhuǎn)換(django自定義模型字段)問題,需要的朋友可以參考下2023-06-06Python內(nèi)建類型int源碼學(xué)習(xí)
這篇文章主要為大家介紹了Python內(nèi)建類型int源碼學(xué)習(xí),有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-05-05Python利用物理引擎Pymunk編寫一個(gè)解壓小游戲
這篇文章主要為大家詳細(xì)介紹了Python如何利用物理引擎Pymunk編寫一個(gè)解壓小游戲,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以嘗試一下2023-01-01Python實(shí)現(xiàn)讀取目錄所有文件的文件名并保存到txt文件代碼
這篇文章主要介紹了Python實(shí)現(xiàn)讀取目錄所有文件的文件名并保存到txt文件代碼,本文分別使用os.listdir和os.walk實(shí)現(xiàn)給出兩段實(shí)現(xiàn)代碼,需要的朋友可以參考下2014-11-11python3+PyQt5 數(shù)據(jù)庫(kù)編程--增刪改實(shí)例
今天小編就為大家分享一篇python3+PyQt5 數(shù)據(jù)庫(kù)編程--增刪改實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-06-06