Python實(shí)現(xiàn)遺傳算法(二進(jìn)制編碼)求函數(shù)最優(yōu)值方式
目標(biāo)函數(shù)
編碼方式
本程序采用的是二進(jìn)制編碼精確到小數(shù)點(diǎn)后五位,經(jīng)過計算可知對于 其編碼長度為18,對于
其編碼長度為15,因此每個基于的長度為33。
參數(shù)設(shè)置
算法步驟
設(shè)計的程序主要分為以下步驟:1、參數(shù)設(shè)置;2、種群初始化;3、用輪盤賭方法選擇其中一半較好的個體作為父代;4、交叉和變異;5、更新最優(yōu)解;6、對最有個體進(jìn)行自學(xué)習(xí)操作;7結(jié)果輸出。其算法流程圖為:
算法結(jié)果
由程序輸出可知其最終優(yōu)化結(jié)果為38.85029,
輸出基因編碼為[1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1]。
代碼
import numpy as np import random import math import copy class Ind(): def __init__(self): self.fitness = 0 self.x = np.zeros(33) self.place = 0 self.x1 = 0 self.x2 = 0 def Cal_fit(x, upper, lower): #計算適應(yīng)度值函數(shù) Temp1 = 0 for i in range(18): Temp1 += x[i] * math.pow(2, i) Temp2 = 0 for i in range(18, 33, 1): Temp2 += math.pow(2, i - 18) * x[i] x1 = lower[0] + Temp1 * (upper[0] - lower[0])/(math.pow(2, 18) - 1) x2 = lower[1] + Temp2 * (upper[1] - lower[1])/(math.pow(2, 15) - 1) if x1 > upper[0]: x1 = random.uniform(lower[0], upper[0]) if x2 > upper[1]: x2 = random.uniform(lower[1], upper[1]) return 21.5 + x1 * math.sin(4 * math.pi * (x1)) + x2 * math.sin(20 * math.pi * x2) def Init(G, upper, lower, Pop): #初始化函數(shù) for i in range(Pop): for j in range(33): G[i].x[j] = random.randint(0, 1) G[i].fitness = Cal_fit(G[i].x, upper, lower) G[i].place = i def Find_Best(G, Pop): Temp = copy.deepcopy(G[0]) for i in range(1, Pop, 1): if G[i].fitness > Temp.fitness: Temp = copy.deepcopy(G[i]) return Temp def Selection(G, Gparent, Pop, Ppool): #選擇函數(shù) fit_sum = np.zeros(Pop) fit_sum[0] = G[0].fitness for i in range(1, Pop, 1): fit_sum[i] = G[i].fitness + fit_sum[i - 1] fit_sum = fit_sum/fit_sum.max() for i in range(Ppool): rate = random.random() Gparent[i] = copy.deepcopy(G[np.where(fit_sum > rate)[0][0]]) def Cross_and_Mutation(Gparent, Gchild, Pc, Pm, upper, lower, Pop, Ppool): #交叉和變異 for i in range(Ppool): place = random.sample([_ for _ in range(Ppool)], 2) parent1 = copy.deepcopy(Gparent[place[0]]) parent2 = copy.deepcopy(Gparent[place[1]]) parent3 = copy.deepcopy(parent2) if random.random() < Pc: num = random.sample([_ for _ in range(1, 32, 1)], 2) num.sort() if random.random() < 0.5: for j in range(num[0], num[1], 1): parent2.x[j] = parent1.x[j] else: for j in range(0, num[0], 1): parent2.x[j] = parent1.x[j] for j in range(num[1], 33, 1): parent2.x[j] = parent1.x[j] num = random.sample([_ for _ in range(1, 32, 1)], 2) num.sort() num.sort() if random.random() < 0.5: for j in range(num[0], num[1], 1): parent1.x[j] = parent3.x[j] else: for j in range(0, num[0], 1): parent1.x[j] = parent3.x[j] for j in range(num[1], 33, 1): parent1.x[j] = parent3.x[j] for j in range(33): if random.random() < Pm: parent1.x[j] = (parent1.x[j] + 1) % 2 if random.random() < Pm: parent2.x[j] = (parent2.x[j] + 1) % 2 parent1.fitness = Cal_fit(parent1.x, upper, lower) parent2.fitness = Cal_fit(parent2.x, upper, lower) Gchild[2 * i] = copy.deepcopy(parent1) Gchild[2 * i + 1] = copy.deepcopy(parent2) def Choose_next(G, Gchild, Gsum, Pop): #選擇下一代函數(shù) for i in range(Pop): Gsum[i] = copy.deepcopy(G[i]) Gsum[2 * i + 1] = copy.deepcopy(Gchild[i]) Gsum = sorted(Gsum, key = lambda x: x.fitness, reverse = True) for i in range(Pop): G[i] = copy.deepcopy(Gsum[i]) G[i].place = i def Decode(x): #解碼函數(shù) Temp1 = 0 for i in range(18): Temp1 += x[i] * math.pow(2, i) Temp2 = 0 for i in range(18, 33, 1): Temp2 += math.pow(2, i - 18) * x[i] x1 = lower[0] + Temp1 * (upper[0] - lower[0]) / (math.pow(2, 18) - 1) x2 = lower[1] + Temp2 * (upper[1] - lower[1]) / (math.pow(2, 15) - 1) if x1 > upper[0]: x1 = random.uniform(lower[0], upper[0]) if x2 > upper[1]: x2 = random.uniform(lower[1], upper[1]) return x1, x2 def Self_Learn(Best, upper, lower, sPm, sLearn): #自學(xué)習(xí)操作 num = 0 Temp = copy.deepcopy(Best) while True: num += 1 for j in range(33): if random.random() < sPm: Temp.x[j] = (Temp.x[j] + 1)%2 Temp.fitness = Cal_fit(Temp.x, upper, lower) if Temp.fitness > Best.fitness: Best = copy.deepcopy(Temp) num = 0 if num > sLearn: break return Best if __name__ == '__main__': upper = [12.1, 5.8] lower = [-3, 4.1] Pop = 100 Ppool = 50 G_max = 300 Pc = 0.8 Pm = 0.1 sPm = 0.05 sLearn = 20 G = np.array([Ind() for _ in range(Pop)]) Gparent = np.array([Ind() for _ in range(Ppool)]) Gchild = np.array([Ind() for _ in range(Pop)]) Gsum = np.array([Ind() for _ in range(Pop * 2)]) Init(G, upper, lower, Pop) #初始化 Best = Find_Best(G, Pop) for k in range(G_max): Selection(G, Gparent, Pop, Ppool) #使用輪盤賭方法選擇其中50%為父代 Cross_and_Mutation(Gparent, Gchild, Pc, Pm, upper, lower, Pop, Ppool) #交叉和變異生成子代 Choose_next(G, Gchild, Gsum, Pop) #選擇出父代和子代中較優(yōu)秀的個體 Cbest = Find_Best(G, Pop) if Best.fitness < Cbest.fitness: Best = copy.deepcopy(Cbest) #跟新最優(yōu)解 else: G[Cbest.place] = copy.deepcopy(Best) Best = Self_Learn(Best, upper, lower, sPm, sLearn) print(Best.fitness) x1, x2 = Decode(Best.x) print(Best.x) print([x1, x2])
以上這篇Python實(shí)現(xiàn)遺傳算法(二進(jìn)制編碼)求函數(shù)最優(yōu)值方式就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
使用python編寫簡單的小程序編譯成exe跑在win10上
這篇文章主要介紹了使用python編寫簡單的小程序編譯成exe跑在win10上的相關(guān)資料,需要的朋友可以參考下2018-01-01Python實(shí)現(xiàn)簡單多線程任務(wù)隊(duì)列
本文給大家介紹的是使用很簡單的代碼實(shí)現(xiàn)的多線程任務(wù)隊(duì)列,給大家一個思路,希望對大家學(xué)習(xí)python能夠有所幫助2016-02-02Python機(jī)器學(xué)習(xí)應(yīng)用之基于線性判別模型的分類篇詳解
線性判別分析(Linear?Discriminant?Analysis,?LDA)是一種監(jiān)督學(xué)習(xí)的降維方法,也就是說數(shù)據(jù)集的每個樣本是有類別輸出。和之前介紹的機(jī)器學(xué)習(xí)降維之主成分分析(PCA)方法不同,PCA是不考慮樣本類別輸出的無監(jiān)督學(xué)習(xí)方法2022-01-01基于python和pygame庫實(shí)現(xiàn)刮刮樂游戲
這篇文章主要介紹了如何基于python和pygame庫實(shí)現(xiàn)刮刮樂游戲,文中通過代碼示例和圖文給大家講解的非常詳細(xì),對大家的學(xué)習(xí)或工作有一定的幫助,需要的朋友可以參考下2024-03-03在python中實(shí)現(xiàn)導(dǎo)入一個需要傳參的模塊
這篇文章主要介紹了在python中實(shí)現(xiàn)導(dǎo)入一個需要傳參的模塊,具有很好的參考價值,希望可以給大家一個參考,以后在遇到這種的情況的時候,知道如何應(yīng)對2021-05-05