基于Pytorch SSD模型分析
本文參考github上SSD實現,對模型進行分析,主要分析模型組成及輸入輸出大小.SSD網絡結構如下圖:
每輸入的圖像有8732個框輸出;
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable #from layers import * from data import voc, coco import os
base = { '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M', 512, 512, 512], '512': [], } extras = { '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256], '512': [], } mbox = { '300': [4, 6, 6, 6, 4, 4], # number of boxes per feature map location '512': [], }
VGG基礎網絡結構:
def vgg(cfg, i, batch_norm=False): layers = [] in_channels = i for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] elif v == 'C': layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) conv7 = nn.Conv2d(1024, 1024, kernel_size=1) layers += [pool5, conv6, nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)] return layers
size=300 vgg=vgg(base[str(size)], 3) print(vgg)
輸出為:
Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True) Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ReLU(inplace) MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(6, 6), dilation=(6, 6)) ReLU(inplace) Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1)) ReLU(inplace)
SSD中添加的網絡
add_extras函數構建基本的卷積層
def add_extras(cfg, i, batch_norm=False): # Extra layers added to VGG for feature scaling layers = [] in_channels = i flag = False for k, v in enumerate(cfg): if in_channels != 'S': if v == 'S': layers += [nn.Conv2d(in_channels, cfg[k + 1], kernel_size=(1, 3)[flag], stride=2, padding=1)] else: layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])] flag = not flag in_channels = v return layers
extra_layers=add_extras(extras[str(size)], 1024) for layer in extra_layers: print(layer)
輸出為:
Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1)) Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1)) Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)) Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1)) Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)) Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
multibox函數得到每個特征圖的默認box的位置計算網絡和分類得分網絡
def multibox(vgg, extra_layers, cfg, num_classes): loc_layers = [] conf_layers = [] vgg_source = [21, -2] for k, v in enumerate(vgg_source): loc_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * 4, kernel_size=3, padding=1)] conf_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * num_classes, kernel_size=3, padding=1)] for k, v in enumerate(extra_layers[1::2], 2): loc_layers += [nn.Conv2d(v.out_channels, cfg[k] * 4, kernel_size=3, padding=1)] conf_layers += [nn.Conv2d(v.out_channels, cfg[k] * num_classes, kernel_size=3, padding=1)] return vgg, extra_layers, (loc_layers, conf_layers)
base_, extras_, head_ = multibox(vgg(base[str(size)], 3), ## 產生vgg19基本模型 add_extras(extras[str(size)], 1024), mbox[str(size)], num_classes) #mbox[str(size)]為:[4, 6, 6, 6, 4, 4]
得到的輸出為:
base_為上述描述的vgg網絡,extras_為extra_layers網絡,head_為:
([Conv2d(512, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(1024, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(512, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(256, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))], [Conv2d(512, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(1024, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(512, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(256, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))])
SSD網絡及forward函數為:
class SSD(nn.Module): """Single Shot Multibox Architecture The network is composed of a base VGG network followed by the added multibox conv layers. Each multibox layer branches into 1) conv2d for class conf scores 2) conv2d for localization predictions 3) associated priorbox layer to produce default bounding boxes specific to the layer's feature map size. See: https://arxiv.org/pdf/1512.02325.pdf for more details. Args: phase: (string) Can be "test" or "train" size: input image size base: VGG16 layers for input, size of either 300 or 500 extras: extra layers that feed to multibox loc and conf layers head: "multibox head" consists of loc and conf conv layers """ def __init__(self, phase, size, base, extras, head, num_classes): super(SSD, self).__init__() self.phase = phase self.num_classes = num_classes self.cfg = (coco, voc)[num_classes == 21] self.priorbox = PriorBox(self.cfg) self.priors = Variable(self.priorbox.forward(), volatile=True) self.size = size # SSD network self.vgg = nn.ModuleList(base) # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm = L2Norm(512, 20) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) if phase == 'test': self.softmax = nn.Softmax(dim=-1) self.detect = Detect(num_classes, 0, 200, 0.01, 0.45) def forward(self, x): """Applies network layers and ops on input image(s) x. Args: x: input image or batch of images. Shape: [batch,3,300,300]. Return: Depending on phase: test: Variable(tensor) of output class label predictions, confidence score, and corresponding location predictions for each object detected. Shape: [batch,topk,7] train: list of concat outputs from: 1: confidence layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] """ sources = list() loc = list() conf = list() # apply vgg up to conv4_3 relu for k in range(23): x = self.vgg[k](x) ##得到的x尺度為[1,512,38,38] s = self.L2Norm(x) sources.append(s) # apply vgg up to fc7 for k in range(23, len(self.vgg)): x = self.vgg[k](x) ##得到的x尺寸為[1,1024,19,19] sources.append(x) # apply extra layers and cache source layer outputs for k, v in enumerate(self.extras): x = F.relu(v(x), inplace=True) if k % 2 == 1: sources.append(x) ''' 上述得到的x輸出分別為: torch.Size([1, 512, 10, 10]) torch.Size([1, 256, 5, 5]) torch.Size([1, 256, 3, 3]) torch.Size([1, 256, 1, 1]) ''' # apply multibox head to source layers for (x, l, c) in zip(sources, self.loc, self.conf): loc.append(l(x).permute(0, 2, 3, 1).contiguous()) conf.append(c(x).permute(0, 2, 3, 1).contiguous()) loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) if self.phase == "test": output = self.detect( loc.view(loc.size(0), -1, 4), # loc preds self.softmax(conf.view(conf.size(0), -1, self.num_classes)), # conf preds self.priors.type(type(x.data)) # default boxes ) else: output = ( loc.view(loc.size(0), -1, 4), #[1,8732,4] conf.view(conf.size(0), -1, self.num_classes),#[1,8732,21] self.priors ) return output
上述代碼中sources中保存的數據輸出如下,即用于邊框提取的特征圖:
torch.Size([1, 512, 38, 38]) torch.Size([1, 1024, 19, 19]) torch.Size([1, 512, 10, 10]) torch.Size([1, 256, 5, 5]) torch.Size([1, 256, 3, 3]) torch.Size([1, 256, 1, 1])
模型輸入為
x=Variable(torch.randn(1,3,300,300))
以上這篇基于Pytorch SSD模型分析就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
python 安裝教程之Pycharm安裝及配置字體主題,換行,自動更新
這篇文章主要介紹了python 安裝教程之Pycharm安裝及配置字體主題,換行,自動更新,本文通過圖文并茂的形式給大家介紹的非常詳細,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下2020-03-03利用Tkinter和matplotlib兩種方式畫餅狀圖的實例
下面小編就為大家?guī)硪黄肨kinter和matplotlib兩種方式畫餅狀圖的實例。小編覺得挺不錯的,現在就分享給大家,也給大家做個參考。一起跟隨小編過來看看吧,希望對大家有所幫助2017-11-11Python中的優(yōu)先隊列(priority?queue)和堆(heap)
這篇文章主要介紹了Python中的優(yōu)先隊列(priority?queue)和堆(heap),具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2022-09-09