欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python基于Dlib的人臉識(shí)別系統(tǒng)的實(shí)現(xiàn)

 更新時(shí)間:2020年02月26日 14:31:08   作者:valuetimer  
這篇文章主要介紹了Python基于Dlib的人臉識(shí)別系統(tǒng)的實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧

之前已經(jīng)介紹過人臉識(shí)別的基礎(chǔ)概念,以及基于opencv的實(shí)現(xiàn)方式,今天,我們使用dlib來提取128維的人臉嵌入,并使用k臨近值方法來實(shí)現(xiàn)人臉識(shí)別。

人臉識(shí)別系統(tǒng)的實(shí)現(xiàn)流程與之前是一樣的,只是這里我們借助了dlib和face_recognition這兩個(gè)庫來實(shí)現(xiàn)。face_recognition是對dlib庫的包裝,使對dlib的使用更方便。所以首先要安裝這2個(gè)庫。

pip3 install dlib
pip3 install face_recognition

然后,還要安裝imutils庫

 pip3 install imutils

我們看一下項(xiàng)目的目錄結(jié)構(gòu):

.
├── dataset
│   ├── alan_grant [22 entries exceeds filelimit, not opening dir]
│   ├── claire_dearing [53 entries exceeds filelimit, not opening dir]
│   ├── ellie_sattler [31 entries exceeds filelimit, not opening dir]
│   ├── ian_malcolm [41 entries exceeds filelimit, not opening dir]
│   ├── john_hammond [36 entries exceeds filelimit, not opening dir]
│   └── owen_grady [35 entries exceeds filelimit, not opening dir]
├── examples
│   ├── example_01.png
│   ├── example_02.png
│   └── example_03.png
├── output
│   ├── lunch_scene_output.avi
│   └── webcam_face_recognition_output.avi
├── videos
│   └── lunch_scene.mp4
├── encode_faces.py
├── encodings.pickle
├── recognize_faces_image.py
├── recognize_faces_video_file.py
├── recognize_faces_video.py
└── search_bing_api.py
 
10 directories, 12 files

首先,提取128維的人臉嵌入:

命令如下:

python3 encode_faces.py --dataset dataset --encodings encodings.pickle -d hog

記?。喝绻愕碾娔X內(nèi)存不夠大,請使用hog模型進(jìn)行人臉檢測,如果內(nèi)存夠大,可以使用cnn神經(jīng)網(wǎng)絡(luò)進(jìn)行人臉檢測。

看代碼:

# USAGE
# python encode_faces.py --dataset dataset --encodings encodings.pickle
 
# import the necessary packages
from imutils import paths
import face_recognition
import argparse
import pickle
import cv2
import os
 
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--dataset", required=True,
	help="path to input directory of faces + images")
ap.add_argument("-e", "--encodings", required=True,
	help="path to serialized db of facial encodings")
ap.add_argument("-d", "--detection-method", type=str, default="hog",
	help="face detection model to use: either `hog` or `cnn`")
args = vars(ap.parse_args())
 
# grab the paths to the input images in our dataset
print("[INFO] quantifying faces...")
imagePaths = list(paths.list_images(args["dataset"]))
 
# initialize the list of known encodings and known names
knownEncodings = []
knownNames = []
 
# loop over the image paths
for (i, imagePath) in enumerate(imagePaths):
	# extract the person name from the image path
	print("[INFO] processing image {}/{}".format(i + 1,
		len(imagePaths)))
	name = imagePath.split(os.path.sep)[-2]
 
	# load the input image and convert it from RGB (OpenCV ordering)
	# to dlib ordering (RGB)
	image = cv2.imread(imagePath)
	rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 
	# detect the (x, y)-coordinates of the bounding boxes
	# corresponding to each face in the input image
	boxes = face_recognition.face_locations(rgb,
		model=args["detection_method"])
 
	# compute the facial embedding for the face
	encodings = face_recognition.face_encodings(rgb, boxes)
 
	# loop over the encodings
	for encoding in encodings:
		# add each encoding + name to our set of known names and
		# encodings
		knownEncodings.append(encoding)
		knownNames.append(name)
 
# dump the facial encodings + names to disk
print("[INFO] serializing encodings...")
data = {"encodings": knownEncodings, "names": knownNames}
f = open(args["encodings"], "wb")
f.write(pickle.dumps(data))
f.close()

輸出結(jié)果是每張圖片輸出一個(gè)人臉的128維的向量和對于的名字,并序列化到硬盤,供后續(xù)人臉識(shí)別使用。

識(shí)別圖像中的人臉:

這里使用KNN方法實(shí)現(xiàn)最終的人臉識(shí)別,而不是使用SVM進(jìn)行訓(xùn)練。

命令如下:

python3 recognize_faces_image.py --encodings encodings.pickle 	--image examples/example_01.png

看代碼:

# USAGE
# python recognize_faces_image.py --encodings encodings.pickle --image examples/example_01.png 
 
# import the necessary packages
import face_recognition
import argparse
import pickle
import cv2
 
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-e", "--encodings", required=True,
	help="path to serialized db of facial encodings")
ap.add_argument("-i", "--image", required=True,
	help="path to input image")
ap.add_argument("-d", "--detection-method", type=str, default="cnn",
	help="face detection model to use: either `hog` or `cnn`")
args = vars(ap.parse_args())
 
# load the known faces and embeddings
print("[INFO] loading encodings...")
data = pickle.loads(open(args["encodings"], "rb").read())
 
# load the input image and convert it from BGR to RGB
image = cv2.imread(args["image"])
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 
# detect the (x, y)-coordinates of the bounding boxes corresponding
# to each face in the input image, then compute the facial embeddings
# for each face
print("[INFO] recognizing faces...")
boxes = face_recognition.face_locations(rgb,
	model=args["detection_method"])
encodings = face_recognition.face_encodings(rgb, boxes)
 
# initialize the list of names for each face detected
names = []
 
# loop over the facial embeddings
for encoding in encodings:
	# attempt to match each face in the input image to our known
	# encodings
	matches = face_recognition.compare_faces(data["encodings"],
		encoding)
	name = "Unknown"
 
	# check to see if we have found a match
	if True in matches:
		# find the indexes of all matched faces then initialize a
		# dictionary to count the total number of times each face
		# was matched
		matchedIdxs = [i for (i, b) in enumerate(matches) if b]
		counts = {}
 
		# loop over the matched indexes and maintain a count for
		# each recognized face face
		for i in matchedIdxs:
			name = data["names"][i]
			counts[name] = counts.get(name, 0) + 1
 
		# determine the recognized face with the largest number of
		# votes (note: in the event of an unlikely tie Python will
		# select first entry in the dictionary)
		name = max(counts, key=counts.get)
	
	# update the list of names
	names.append(name)
 
# loop over the recognized faces
for ((top, right, bottom, left), name) in zip(boxes, names):
	# draw the predicted face name on the image
	cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
	y = top - 15 if top - 15 > 15 else top + 15
	cv2.putText(image, name, (left, y), cv2.FONT_HERSHEY_SIMPLEX,
		0.75, (0, 255, 0), 2)
 
# show the output image
cv2.imshow("Image", image)
cv2.waitKey(0)

實(shí)際效果如下:

如果要詳細(xì)了解細(xì)節(jié),請參考:https://www.pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/

到此這篇關(guān)于Python基于Dlib的人臉識(shí)別系統(tǒng)的實(shí)現(xiàn)的文章就介紹到這了,更多相關(guān)Python Dlib人臉識(shí)別內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • Python繪制頻率分布直方圖的示例

    Python繪制頻率分布直方圖的示例

    今天小編就為大家分享一篇Python繪制頻率分布直方圖的示例,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2019-07-07
  • 基于Python和PyYAML讀取yaml配置文件數(shù)據(jù)

    基于Python和PyYAML讀取yaml配置文件數(shù)據(jù)

    這篇文章主要介紹了基于Python和PyYAML讀取yaml配置文件數(shù)據(jù),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下
    2020-01-01
  • Python中tuple類型的使用

    Python中tuple類型的使用

    在Python中,元組(tuple)是一種不可變的序列類型,可以包含多個(gè)值,這些值可以是不同類型的,本文主要介紹了Python中tuple類型的使用,感興趣的可以了解一下
    2023-12-12
  • 詳解Python中的正則表達(dá)式

    詳解Python中的正則表達(dá)式

    正則表達(dá)式是一個(gè)特殊的字符序列,它能幫助你方便的檢查一個(gè)字符串是否與某種模式匹配。本文給大家?guī)砹藀ython中的正則表達(dá)式,感興趣的朋友一起看看吧
    2018-07-07
  • Python實(shí)現(xiàn)PS濾鏡功能之波浪特效示例

    Python實(shí)現(xiàn)PS濾鏡功能之波浪特效示例

    這篇文章主要介紹了Python實(shí)現(xiàn)PS濾鏡功能之波浪特效,結(jié)合實(shí)例形式分析了Python實(shí)現(xiàn)PS濾鏡波浪特效的原理與相關(guān)操作技巧,需要的朋友可以參考下
    2018-01-01
  • 一文詳解CNN 解決 Flowers 圖像分類任務(wù)

    一文詳解CNN 解決 Flowers 圖像分類任務(wù)

    這篇文章主要為大家介紹了CNN 解決 Flowers 圖像分類任務(wù)詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪
    2023-03-03
  • keras 簡單 lstm實(shí)例(基于one-hot編碼)

    keras 簡單 lstm實(shí)例(基于one-hot編碼)

    這篇文章主要介紹了keras 簡單 lstm實(shí)例(基于one-hot編碼),具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2020-07-07
  • Python數(shù)據(jù)結(jié)構(gòu)集合的相關(guān)詳解

    Python數(shù)據(jù)結(jié)構(gòu)集合的相關(guān)詳解

    集合是Python中一種無序且元素唯一的數(shù)據(jù)結(jié)構(gòu),主要用于存儲(chǔ)不重復(fù)的元素,Python提供set類型表示集合,可通過{}或set()創(chuàng)建,集合元素不可重復(fù)且無序,不支持索引訪問,但可迭代,集合可變,支持添加、刪除元素,集合操作包括并集、交集、差集等,可通過運(yùn)算符或方法執(zhí)行
    2024-09-09
  • Python logging模塊寫入中文出現(xiàn)亂碼

    Python logging模塊寫入中文出現(xiàn)亂碼

    這篇文章主要介紹了Python logging模塊寫入中文出現(xiàn)亂碼,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下
    2020-05-05
  • Pycharm如何返回上一次編輯處的快捷鍵

    Pycharm如何返回上一次編輯處的快捷鍵

    這篇文章主要介紹了Pycharm如何返回上一次編輯處的快捷鍵問題,具有很好的參考價(jià)值,希望對大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2023-03-03

最新評(píng)論