在pytorch中實現(xiàn)只讓指定變量向后傳播梯度
pytorch中如何只讓指定變量向后傳播梯度?
(或者說如何讓指定變量不參與后向傳播?)
有以下公式,假如要讓L對xvar求導(dǎo):
(1)中,L對xvar的求導(dǎo)將同時計算out1部分和out2部分;
(2)中,L對xvar的求導(dǎo)只計算out2部分,因為out1的requires_grad=False;
(3)中,L對xvar的求導(dǎo)只計算out1部分,因為out2的requires_grad=False;
驗證如下:
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed May 23 10:02:04 2018 @author: hy """ import torch from torch.autograd import Variable print("Pytorch version: {}".format(torch.__version__)) x=torch.Tensor([1]) xvar=Variable(x,requires_grad=True) y1=torch.Tensor([2]) y2=torch.Tensor([7]) y1var=Variable(y1) y2var=Variable(y2) #(1) print("For (1)") print("xvar requres_grad: {}".format(xvar.requires_grad)) print("y1var requres_grad: {}".format(y1var.requires_grad)) print("y2var requres_grad: {}".format(y2var.requires_grad)) out1 = xvar*y1var print("out1 requres_grad: {}".format(out1.requires_grad)) out2 = xvar*y2var print("out2 requres_grad: {}".format(out2.requires_grad)) L=torch.pow(out1-out2,2) L.backward() print("xvar.grad: {}".format(xvar.grad)) xvar.grad.data.zero_() #(2) print("For (2)") print("xvar requres_grad: {}".format(xvar.requires_grad)) print("y1var requres_grad: {}".format(y1var.requires_grad)) print("y2var requres_grad: {}".format(y2var.requires_grad)) out1 = xvar*y1var print("out1 requres_grad: {}".format(out1.requires_grad)) out2 = xvar*y2var print("out2 requres_grad: {}".format(out2.requires_grad)) out1 = out1.detach() print("after out1.detach(), out1 requres_grad: {}".format(out1.requires_grad)) L=torch.pow(out1-out2,2) L.backward() print("xvar.grad: {}".format(xvar.grad)) xvar.grad.data.zero_() #(3) print("For (3)") print("xvar requres_grad: {}".format(xvar.requires_grad)) print("y1var requres_grad: {}".format(y1var.requires_grad)) print("y2var requres_grad: {}".format(y2var.requires_grad)) out1 = xvar*y1var print("out1 requres_grad: {}".format(out1.requires_grad)) out2 = xvar*y2var print("out2 requres_grad: {}".format(out2.requires_grad)) #out1 = out1.detach() out2 = out2.detach() print("after out2.detach(), out2 requres_grad: {}".format(out1.requires_grad)) L=torch.pow(out1-out2,2) L.backward() print("xvar.grad: {}".format(xvar.grad)) xvar.grad.data.zero_()
pytorch中,將變量的requires_grad設(shè)為False,即可讓變量不參與梯度的后向傳播;
但是不能直接將out1.requires_grad=False;
其實,Variable類型提供了detach()方法,所返回變量的requires_grad為False。
注意:如果out1和out2的requires_grad都為False的話,那么xvar.grad就出錯了,因為梯度沒有傳到xvar
補充:
volatile=True表示這個變量不計算梯度, 參考:Volatile is recommended for purely inference mode, when you're sure you won't be even calling .backward(). It's more efficient than any other autograd setting - it will use the absolute minimal amount of memory to evaluate the model. volatile also determines that requires_grad is False.
以上這篇在pytorch中實現(xiàn)只讓指定變量向后傳播梯度就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
python os.listdir按文件存取時間順序列出目錄的實例
今天小編就為大家分享一篇python os.listdir按文件存取時間順序列出目錄的實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-10-10python判斷計算機是否有網(wǎng)絡(luò)連接的實例
今天小編就為大家分享一篇python判斷計算機是否有網(wǎng)絡(luò)連接的實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-12-12Python實現(xiàn)隨機生成算術(shù)題的示例代碼
這篇文章主要為大家詳細介紹了如何利用Python實現(xiàn)隨機生成算術(shù)題的功能,文中的示例代碼講解詳細,感興趣的小伙伴可以跟隨小編一起學(xué)習(xí)一下2023-04-04Python編程實現(xiàn)輸入某年某月某日計算出這一天是該年第幾天的方法
這篇文章主要介紹了Python編程實現(xiàn)輸入某年某月某日計算出這一天是該年第幾天的方法,涉及Python針對日期時間的轉(zhuǎn)換與運算相關(guān)操作技巧,需要的朋友可以參考下2017-04-04python寫入csv時writerow()和writerows()函數(shù)簡單示例
這篇文章主要給大家介紹了關(guān)于python寫入csv時writerow()和writerows()函數(shù)的相關(guān)資料,writerows和writerow是Python中csv模塊中的兩個函數(shù),用于將數(shù)據(jù)寫入CSV文件,需要的朋友可以參考下2023-07-07