python如何將兩張圖片生成為全景圖片
本文實例為大家分享了python將兩張圖片生成全景圖片的具體代碼,供大家參考,具體內容如下
1、全景圖片的介紹
全景圖通過廣角的表現(xiàn)手段以及繪畫、相片、視頻、三維模型等形式,盡可能多表現(xiàn)出周圍的環(huán)境。360全景,即通過對專業(yè)相機捕捉整個場景的圖像信息或者使用建模軟件渲染過后的圖片,使用軟件進行圖片拼合,并用專門的播放器進行播放,即將平面照片或者計算機建模圖片變?yōu)?60 度全觀,用于虛擬現(xiàn)實瀏覽,把二維的平面圖模擬成真實的三維空間,呈現(xiàn)給觀賞者。
2、如何實現(xiàn)
2.1、實現(xiàn)原理
主要是利用sift的特征提取與匹配,參考鏈接
2.2、實現(xiàn)代碼
# -*- coding:utf-8 -*-
u'''
Created on 2019年6月14日
@author: wuluo
'''
__author__ = 'wuluo'
__version__ = '1.0.0'
__company__ = u'重慶交大'
__updated__ = '2019-06-14'
import numpy as np
import cv2 as cv
from PIL import Image
from matplotlib import pyplot as plt
print('cv version: ', cv.__version__)
def pinjie():
top, bot, left, right = 100, 100, 0, 500
img1 = cv.imread('G:/2018and2019two/qianrushi/wuluo1.png')
cv.imshow("img1", img1)
img2 = cv.imread('G:/2018and2019two/qianrushi/wuluo2.png')
cv.imshow("img2", img2)
srcImg = cv.copyMakeBorder(
img1, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
testImg = cv.copyMakeBorder(
img2, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
img1gray = cv.cvtColor(srcImg, cv.COLOR_BGR2GRAY)
img2gray = cv.cvtColor(testImg, cv.COLOR_BGR2GRAY)
sift = cv.xfeatures2d_SIFT().create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1gray, None)
kp2, des2 = sift.detectAndCompute(img2gray, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# Need to draw only good matches, so create a mask
matchesMask = [[0, 0] for i in range(len(matches))]
good = []
pts1 = []
pts2 = []
# ratio test as per Lowe's paper
for i, (m, n) in enumerate(matches):
if m.distance < 0.7 * n.distance:
good.append(m)
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
matchesMask[i] = [1, 0]
draw_params = dict(matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0),
matchesMask=matchesMask,
flags=0)
img3 = cv.drawMatchesKnn(img1gray, kp1, img2gray,
kp2, matches, None, **draw_params)
#plt.imshow(img3, ), plt.show()
rows, cols = srcImg.shape[:2]
MIN_MATCH_COUNT = 10
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32(
[kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32(
[kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC, 5.0)
warpImg = cv.warpPerspective(testImg, np.array(
M), (testImg.shape[1], testImg.shape[0]), flags=cv.WARP_INVERSE_MAP)
for col in range(0, cols):
if srcImg[:, col].any() and warpImg[:, col].any():
left = col
break
for col in range(cols - 1, 0, -1):
if srcImg[:, col].any() and warpImg[:, col].any():
right = col
break
res = np.zeros([rows, cols, 3], np.uint8)
for row in range(0, rows):
for col in range(0, cols):
if not srcImg[row, col].any():
res[row, col] = warpImg[row, col]
elif not warpImg[row, col].any():
res[row, col] = srcImg[row, col]
else:
srcImgLen = float(abs(col - left))
testImgLen = float(abs(col - right))
alpha = srcImgLen / (srcImgLen + testImgLen)
res[row, col] = np.clip(
srcImg[row, col] * (1 - alpha) + warpImg[row, col] * alpha, 0, 255)
# opencv is bgr, matplotlib is rgb
res = cv.cvtColor(res, cv.COLOR_BGR2RGB)
# show the result
plt.figure()
plt.imshow(res)
plt.show()
else:
print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT))
matchesMask = None
if __name__ == "__main__":
pinjie()
3、運行效果
原始的兩張圖:

效果圖:

原始圖,水杯沒有處理好,導致此處效果不好。
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關文章
PyTorch中tensor.backward()函數的詳細介紹及功能實現(xiàn)
backward()?函數是PyTorch框架中自動求梯度功能的一部分,它負責執(zhí)行反向傳播算法以計算模型參數的梯度,這篇文章主要介紹了PyTorch中tensor.backward()函數的詳細介紹,需要的朋友可以參考下2024-02-02
Django獲取model中的字段名和字段的verbose_name方式
這篇文章主要介紹了Django獲取model中的字段名和字段的verbose_name方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-05-05

