欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python pandas.DataFrame.loc函數(shù)使用詳解

 更新時(shí)間:2020年03月26日 15:44:02   作者:brucewong0516  
這篇文章主要介紹了python pandas.DataFrame.loc函數(shù)使用詳解,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧

官方函數(shù)

DataFrame.loc
Access a group of rows and columns by label(s) or a boolean array.
.loc[] is primarily label based, but may also be used with a boolean array.
# 可以使用label值,但是也可以使用布爾值

  • Allowed inputs are: # 可以接受單個(gè)的label,多個(gè)label的列表,多個(gè)label的切片
  • A single label, e.g. 5 or ‘a(chǎn)', (note that 5 is interpreted as a label of the index, and never as an integer position along the index). #這里的5不是數(shù)值指定的位置,而是label值
  • A list or array of labels, e.g. [‘a(chǎn)', ‘b', ‘c'].

slice object with labels, e.g. ‘a(chǎn)':'f'.

Warning: #如果使用多個(gè)label的切片,那么切片的起始位置都是包含的

Note that contrary to usual python slices, both the start and the stop are included

  • A boolean array of the same length as the axis being sliced, e.g. [True, False, True].

實(shí)例詳解

一、選擇數(shù)值

1、生成df

df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
...   index=['cobra', 'viper', 'sidewinder'],
...   columns=['max_speed', 'shield'])

df
Out[15]: 
      max_speed shield
cobra        1    2
viper        4    5
sidewinder     7    8

2、Single label. 單個(gè) row_label 返回的Series

df.loc['viper']
Out[17]: 
max_speed  4
shield    5
Name: viper, dtype: int64

2、List of labels. 列表 row_label 返回的DataFrame

df.loc[['cobra','viper']]
Out[20]: 
    max_speed shield
cobra     1    2
viper     4    5

3、Single label for row and column 同時(shí)選定行和列

df.loc['cobra', 'shield']
Out[24]: 2

4、Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. 同時(shí)選定多個(gè)行和單個(gè)列,注意的是通過列表選定多個(gè)row label 時(shí),首位均是選定的。

df.loc['cobra':'viper', 'max_speed']
Out[25]: 
cobra  1
viper  4
Name: max_speed, dtype: int64

5、Boolean list with the same length as the row axis 布爾列表選擇row label
布爾值列表是根據(jù)某個(gè)位置的True or False 來選定,如果某個(gè)位置的布爾值是True,則選定該row

df
Out[30]: 
      max_speed shield
cobra        1    2
viper        4    5
sidewinder     7    8

df.loc[[True]]
Out[31]: 
    max_speed shield
cobra     1    2

df.loc[[True,False]]
Out[32]: 
    max_speed shield
cobra     1    2

df.loc[[True,False,True]]
Out[33]: 
      max_speed shield
cobra        1    2
sidewinder     7    8

6、Conditional that returns a boolean Series 條件布爾值

df.loc[df['shield'] > 6]
Out[34]: 
      max_speed shield
sidewinder     7    8

7、Conditional that returns a boolean Series with column labels specified 條件布爾值和具體某列的數(shù)據(jù)

df.loc[df['shield'] > 6, ['max_speed']]
Out[35]: 
      max_speed
sidewinder     7

8、Callable that returns a boolean Series 通過函數(shù)得到布爾結(jié)果選定數(shù)據(jù)

df
Out[37]: 
      max_speed shield
cobra        1    2
viper        4    5
sidewinder     7    8

df.loc[lambda df: df['shield'] == 8]
Out[38]: 
      max_speed shield
sidewinder     7    8

二、賦值

1、Set value for all items matching the list of labels 根據(jù)某列表選定的row 及某列 column 賦值

df.loc[['viper', 'sidewinder'], ['shield']] = 50

df
Out[43]: 
      max_speed shield
cobra        1    2
viper        4   50
sidewinder     7   50

2、Set value for an entire row 將某行row的數(shù)據(jù)全部賦值

df.loc['cobra'] =10

df
Out[48]: 
      max_speed shield
cobra       10   10
viper        4   50
sidewinder     7   50

3、Set value for an entire column 將某列的數(shù)據(jù)完全賦值

df.loc[:, 'max_speed'] = 30

df
Out[50]: 
      max_speed shield
cobra       30   10
viper       30   50
sidewinder     30   50

4、Set value for rows matching callable condition 條件選定rows賦值

df.loc[df['shield'] > 35] = 0

df
Out[52]: 
      max_speed shield
cobra       30   10
viper        0    0
sidewinder     0    0

三、行索引是數(shù)值

df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
...   index=[7, 8, 9], columns=['max_speed', 'shield'])

df
Out[54]: 
  max_speed shield
7     1    2
8     4    5
9     7    8

通過 行 rows的切片的方式取多個(gè):

df.loc[7:9]
Out[55]: 
  max_speed shield
7     1    2
8     4    5
9     7    8

四、多維索引

1、生成多維索引

tuples = [
...  ('cobra', 'mark i'), ('cobra', 'mark ii'),
...  ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
...  ('viper', 'mark ii'), ('viper', 'mark iii')
... ]
index = pd.MultiIndex.from_tuples(tuples)
values = [[12, 2], [0, 4], [10, 20],
...     [1, 4], [7, 1], [16, 36]]
df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)


df
Out[57]: 
           max_speed shield
cobra   mark i      12    2
      mark ii      0    4
sidewinder mark i      10   20
      mark ii      1    4
viper   mark ii      7    1
      mark iii     16   36

2、Single label. 傳入的就是最外層的row label,返回DataFrame

df.loc['cobra']
Out[58]: 
     max_speed shield
mark i     12    2
mark ii     0    4

3、Single index tuple.傳入的是索引元組,返回Series

df.loc[('cobra', 'mark ii')]
Out[59]: 
max_speed  0
shield    4
Name: (cobra, mark ii), dtype: int64

4、Single label for row and column.如果傳入的是row和column,和傳入tuple是類似的,返回Series

df.loc['cobra', 'mark i']
Out[60]: 
max_speed  12
shield    2
Name: (cobra, mark i), dtype: int64

5、Single tuple. Note using [[ ]] returns a DataFrame.傳入一個(gè)數(shù)組,返回一個(gè)DataFrame

df.loc[[('cobra', 'mark ii')]]
Out[61]: 
        max_speed shield
cobra mark ii     0    4

6、Single tuple for the index with a single label for the column 獲取某個(gè)colum的某row的數(shù)據(jù),需要左邊傳入多維索引的tuple,然后再傳入column

df.loc[('cobra', 'mark i'), 'shield']
Out[62]: 2

7、傳入多維索引和單個(gè)索引的切片:

df.loc[('cobra', 'mark i'):'viper']
Out[63]: 
           max_speed shield
cobra   mark i      12    2
      mark ii      0    4
sidewinder mark i      10   20
      mark ii      1    4
viper   mark ii      7    1
      mark iii     16   36

df.loc[('cobra', 'mark i'):'sidewinder']
Out[64]: 
          max_speed shield
cobra   mark i     12    2
      mark ii     0    4
sidewinder mark i     10   20
      mark ii     1    4

df.loc[('cobra', 'mark i'):('sidewinder','mark i')]
Out[65]: 
          max_speed shield
cobra   mark i     12    2
      mark ii     0    4
sidewinder mark i     10   20

到此這篇關(guān)于python pandas.DataFrame.loc函數(shù)使用詳解的文章就介紹到這了,更多相關(guān)pandas.DataFrame.loc函數(shù)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

最新評(píng)論