python pandas.DataFrame.loc函數(shù)使用詳解
官方函數(shù)
DataFrame.loc
Access a group of rows and columns by label(s) or a boolean array.
.loc[] is primarily label based, but may also be used with a boolean array.
# 可以使用label值,但是也可以使用布爾值
- Allowed inputs are: # 可以接受單個的label,多個label的列表,多個label的切片
- A single label, e.g. 5 or ‘a(chǎn)', (note that 5 is interpreted as a label of the index, and never as an integer position along the index). #這里的5不是數(shù)值指定的位置,而是label值
- A list or array of labels, e.g. [‘a(chǎn)', ‘b', ‘c'].
slice object with labels, e.g. ‘a(chǎn)':'f'.
Warning: #如果使用多個label的切片,那么切片的起始位置都是包含的
Note that contrary to usual python slices, both the start and the stop are included
- A boolean array of the same length as the axis being sliced, e.g. [True, False, True].
實例詳解
一、選擇數(shù)值
1、生成df
df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
... index=['cobra', 'viper', 'sidewinder'],
... columns=['max_speed', 'shield'])
df
Out[15]:
max_speed shield
cobra 1 2
viper 4 5
sidewinder 7 8
2、Single label. 單個 row_label 返回的Series
df.loc['viper'] Out[17]: max_speed 4 shield 5 Name: viper, dtype: int64
2、List of labels. 列表 row_label 返回的DataFrame
df.loc[['cobra','viper']]
Out[20]:
max_speed shield
cobra 1 2
viper 4 5
3、Single label for row and column 同時選定行和列
df.loc['cobra', 'shield'] Out[24]: 2
4、Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. 同時選定多個行和單個列,注意的是通過列表選定多個row label 時,首位均是選定的。
df.loc['cobra':'viper', 'max_speed'] Out[25]: cobra 1 viper 4 Name: max_speed, dtype: int64
5、Boolean list with the same length as the row axis 布爾列表選擇row label
布爾值列表是根據(jù)某個位置的True or False 來選定,如果某個位置的布爾值是True,則選定該row
df
Out[30]:
max_speed shield
cobra 1 2
viper 4 5
sidewinder 7 8
df.loc[[True]]
Out[31]:
max_speed shield
cobra 1 2
df.loc[[True,False]]
Out[32]:
max_speed shield
cobra 1 2
df.loc[[True,False,True]]
Out[33]:
max_speed shield
cobra 1 2
sidewinder 7 8
6、Conditional that returns a boolean Series 條件布爾值
df.loc[df['shield'] > 6]
Out[34]:
max_speed shield
sidewinder 7 8
7、Conditional that returns a boolean Series with column labels specified 條件布爾值和具體某列的數(shù)據(jù)
df.loc[df['shield'] > 6, ['max_speed']]
Out[35]:
max_speed
sidewinder 7
8、Callable that returns a boolean Series 通過函數(shù)得到布爾結(jié)果選定數(shù)據(jù)
df
Out[37]:
max_speed shield
cobra 1 2
viper 4 5
sidewinder 7 8
df.loc[lambda df: df['shield'] == 8]
Out[38]:
max_speed shield
sidewinder 7 8
二、賦值
1、Set value for all items matching the list of labels 根據(jù)某列表選定的row 及某列 column 賦值
df.loc[['viper', 'sidewinder'], ['shield']] = 50
df
Out[43]:
max_speed shield
cobra 1 2
viper 4 50
sidewinder 7 50
2、Set value for an entire row 將某行row的數(shù)據(jù)全部賦值
df.loc['cobra'] =10
df
Out[48]:
max_speed shield
cobra 10 10
viper 4 50
sidewinder 7 50
3、Set value for an entire column 將某列的數(shù)據(jù)完全賦值
df.loc[:, 'max_speed'] = 30
df
Out[50]:
max_speed shield
cobra 30 10
viper 30 50
sidewinder 30 50
4、Set value for rows matching callable condition 條件選定rows賦值
df.loc[df['shield'] > 35] = 0
df
Out[52]:
max_speed shield
cobra 30 10
viper 0 0
sidewinder 0 0
三、行索引是數(shù)值
df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) df Out[54]: max_speed shield 7 1 2 8 4 5 9 7 8
通過 行 rows的切片的方式取多個:
df.loc[7:9] Out[55]: max_speed shield 7 1 2 8 4 5 9 7 8
四、多維索引
1、生成多維索引
tuples = [
... ('cobra', 'mark i'), ('cobra', 'mark ii'),
... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
... ('viper', 'mark ii'), ('viper', 'mark iii')
... ]
index = pd.MultiIndex.from_tuples(tuples)
values = [[12, 2], [0, 4], [10, 20],
... [1, 4], [7, 1], [16, 36]]
df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
df
Out[57]:
max_speed shield
cobra mark i 12 2
mark ii 0 4
sidewinder mark i 10 20
mark ii 1 4
viper mark ii 7 1
mark iii 16 36
2、Single label. 傳入的就是最外層的row label,返回DataFrame
df.loc['cobra']
Out[58]:
max_speed shield
mark i 12 2
mark ii 0 4
3、Single index tuple.傳入的是索引元組,返回Series
df.loc[('cobra', 'mark ii')]
Out[59]:
max_speed 0
shield 4
Name: (cobra, mark ii), dtype: int64
4、Single label for row and column.如果傳入的是row和column,和傳入tuple是類似的,返回Series
df.loc['cobra', 'mark i'] Out[60]: max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64
5、Single tuple. Note using [[ ]] returns a DataFrame.傳入一個數(shù)組,返回一個DataFrame
df.loc[[('cobra', 'mark ii')]]
Out[61]:
max_speed shield
cobra mark ii 0 4
6、Single tuple for the index with a single label for the column 獲取某個colum的某row的數(shù)據(jù),需要左邊傳入多維索引的tuple,然后再傳入column
df.loc[('cobra', 'mark i'), 'shield']
Out[62]: 2
7、傳入多維索引和單個索引的切片:
df.loc[('cobra', 'mark i'):'viper']
Out[63]:
max_speed shield
cobra mark i 12 2
mark ii 0 4
sidewinder mark i 10 20
mark ii 1 4
viper mark ii 7 1
mark iii 16 36
df.loc[('cobra', 'mark i'):'sidewinder']
Out[64]:
max_speed shield
cobra mark i 12 2
mark ii 0 4
sidewinder mark i 10 20
mark ii 1 4
df.loc[('cobra', 'mark i'):('sidewinder','mark i')]
Out[65]:
max_speed shield
cobra mark i 12 2
mark ii 0 4
sidewinder mark i 10 20
到此這篇關(guān)于python pandas.DataFrame.loc函數(shù)使用詳解的文章就介紹到這了,更多相關(guān)pandas.DataFrame.loc函數(shù)內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
- Python?pandas?DataFrame基礎(chǔ)運算及空值填充詳解
- Python數(shù)據(jù)分析之?Pandas?Dataframe條件篩選遍歷詳情
- Python數(shù)據(jù)分析之?Pandas?Dataframe合并和去重操作
- Python數(shù)據(jù)分析Pandas?Dataframe排序操作
- python?pandas分割DataFrame中的字符串及元組的方法實現(xiàn)
- Python pandas.DataFrame 找出有空值的行
- Python pandas.DataFrame調(diào)整列順序及修改index名的方法
- python?Pandas之DataFrame索引及選取數(shù)據(jù)
相關(guān)文章
Python網(wǎng)絡編程之ZeroMQ知識總結(jié)
這篇文章主要介紹了Python網(wǎng)絡編程之ZeroMQ知識總結(jié),文中有非常詳細的代碼示例,對正在學習python的小伙伴們有非常好的幫助,需要的朋友可以參考下2021-04-04
Python使用Tkinter庫如何設置tkinter ttk框架背景顏色
本文介紹了在Python的Tkinter庫中,如何使用style.configure方法為ttk框架設置背景顏色及其他樣式屬性,以定制美觀的GUI界面2024-09-09
對python產(chǎn)生隨機的二維數(shù)組實例詳解
今天小編就為大家分享一篇對python產(chǎn)生隨機的二維數(shù)組實例詳解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-12-12
python?tkinter實現(xiàn)學生信息管理系統(tǒng)
這篇文章主要為大家詳細介紹了python?tkinter實現(xiàn)學生信息管理系統(tǒng),文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下2022-02-02
用Python編寫腳本使IE實現(xiàn)代理上網(wǎng)的教程
這篇文章主要介紹了用Python編寫腳本使IE實現(xiàn)代理上網(wǎng)的教程,“著名的”goagent代理也是基于同樣原理實現(xiàn),需要的朋友可以參考下2015-04-04
利用Pycharm斷點調(diào)試Python程序的方法
今天小編就為大家分享一篇利用Pycharm斷點調(diào)試Python程序的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-11-11

