python實(shí)現(xiàn)交并比IOU教程
交并比(Intersection-over-Union,IoU),目標(biāo)檢測(cè)中使用的一個(gè)概念,是產(chǎn)生的候選框(candidate bound)與原標(biāo)記框(ground truth bound)的交疊率,即它們的交集與并集的比值。最理想情況是完全重疊,即比值為1。
計(jì)算公式:
Python實(shí)現(xiàn)代碼:
def cal_iou(box1, box2): """ :param box1: = [xmin1, ymin1, xmax1, ymax1] :param box2: = [xmin2, ymin2, xmax2, ymax2] :return: """ xmin1, ymin1, xmax1, ymax1 = box1 xmin2, ymin2, xmax2, ymax2 = box2 # 計(jì)算每個(gè)矩形的面積 s1 = (xmax1 - xmin1) * (ymax1 - ymin1) # C的面積 s2 = (xmax2 - xmin2) * (ymax2 - ymin2) # G的面積 # 計(jì)算相交矩形 xmin = max(xmin1, xmin2) ymin = max(ymin1, ymin2) xmax = min(xmax1, xmax2) ymax = min(ymax1, ymax2) w = max(0, xmax - xmin) h = max(0, ymax - ymin) area = w * h # C∩G的面積 iou = area / (s1 + s2 - area) return iou
# -*-coding: utf-8 -*- """ @Project: IOU @File : IOU.py @Author : panjq @E-mail : pan_jinquan@163.com @Date : 2018-10-14 10:44:06 """ def calIOU_V1(rec1, rec2): """ computing IoU :param rec1: (y0, x0, y1, x1), which reflects (top, left, bottom, right) :param rec2: (y0, x0, y1, x1) :return: scala value of IoU """ # 計(jì)算每個(gè)矩形的面積 S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) # computing the sum_area sum_area = S_rec1 + S_rec2 # find the each edge of intersect rectangle left_line = max(rec1[1], rec2[1]) right_line = min(rec1[3], rec2[3]) top_line = max(rec1[0], rec2[0]) bottom_line = min(rec1[2], rec2[2]) # judge if there is an intersect if left_line >= right_line or top_line >= bottom_line: return 0 else: intersect = (right_line - left_line) * (bottom_line - top_line) return intersect/(sum_area - intersect) def calIOU_V2(rec1, rec2): """ computing IoU :param rec1: (y0, x0, y1, x1), which reflects (top, left, bottom, right) :param rec2: (y0, x0, y1, x1) :return: scala value of IoU """ # cx1 = rec1[0] # cy1 = rec1[1] # cx2 = rec1[2] # cy2 = rec1[3] # gx1 = rec2[0] # gy1 = rec2[1] # gx2 = rec2[2] # gy2 = rec2[3] cx1,cy1,cx2,cy2=rec1 gx1,gy1,gx2,gy2=rec2 # 計(jì)算每個(gè)矩形的面積 S_rec1 = (cx2 - cx1) * (cy2 - cy1) # C的面積 S_rec2 = (gx2 - gx1) * (gy2 - gy1) # G的面積 # 計(jì)算相交矩形 x1 = max(cx1, gx1) y1 = max(cy1, gy1) x2 = min(cx2, gx2) y2 = min(cy2, gy2) w = max(0, x2 - x1) h = max(0, y2 - y1) area = w * h # C∩G的面積 iou = area / (S_rec1 + S_rec2 - area) return iou if __name__=='__main__': rect1 = (661, 27, 679, 47) # (top, left, bottom, right) rect2 = (662, 27, 682, 47) iou1 = calIOU_V1(rect1, rect2) iou2 = calIOU_V2(rect1, rect2) print(iou1) print(iou2)
參考:http://www.dbjr.com.cn/article/184542.htm
補(bǔ)充知識(shí):Python計(jì)算多分類的混淆矩陣,Precision、Recall、f1-score、mIOU等指標(biāo)
直接上代碼,一看很清楚
import os import numpy as np from glob import glob from collections import Counter def cal_confu_matrix(label, predict, class_num): confu_list = [] for i in range(class_num): c = Counter(predict[np.where(label == i)]) single_row = [] for j in range(class_num): single_row.append(c[j]) confu_list.append(single_row) return np.array(confu_list).astype(np.int32) def metrics(confu_mat_total, save_path=None): ''' :param confu_mat: 總的混淆矩陣 backgound:是否干掉背景 :return: txt寫出混淆矩陣, precision,recall,IOU,f-score ''' class_num = confu_mat_total.shape[0] confu_mat = confu_mat_total.astype(np.float32) + 0.0001 col_sum = np.sum(confu_mat, axis=1) # 按行求和 raw_sum = np.sum(confu_mat, axis=0) # 每一列的數(shù)量 '''計(jì)算各類面積比,以求OA值''' oa = 0 for i in range(class_num): oa = oa + confu_mat[i, i] oa = oa / confu_mat.sum() '''Kappa''' pe_fz = 0 for i in range(class_num): pe_fz += col_sum[i] * raw_sum[i] pe = pe_fz / (np.sum(confu_mat) * np.sum(confu_mat)) kappa = (oa - pe) / (1 - pe) # 將混淆矩陣寫入excel中 TP = [] # 識(shí)別中每類分類正確的個(gè)數(shù) for i in range(class_num): TP.append(confu_mat[i, i]) # 計(jì)算f1-score TP = np.array(TP) FN = col_sum - TP FP = raw_sum - TP # 計(jì)算并寫出precision,recall, f1-score,f1-m以及mIOU f1_m = [] iou_m = [] for i in range(class_num): # 寫出f1-score f1 = TP[i] * 2 / (TP[i] * 2 + FP[i] + FN[i]) f1_m.append(f1) iou = TP[i] / (TP[i] + FP[i] + FN[i]) iou_m.append(iou) f1_m = np.array(f1_m) iou_m = np.array(iou_m) if save_path is not None: with open(save_path + 'accuracy.txt', 'w') as f: f.write('OA:\t%.4f\n' % (oa*100)) f.write('kappa:\t%.4f\n' % (kappa*100)) f.write('mf1-score:\t%.4f\n' % (np.mean(f1_m)*100)) f.write('mIou:\t%.4f\n' % (np.mean(iou_m)*100)) # 寫出precision f.write('precision:\n') for i in range(class_num): f.write('%.4f\t' % (float(TP[i]/raw_sum[i])*100)) f.write('\n') # 寫出recall f.write('recall:\n') for i in range(class_num): f.write('%.4f\t' % (float(TP[i] / col_sum[i])*100)) f.write('\n') # 寫出f1-score f.write('f1-score:\n') for i in range(class_num): f.write('%.4f\t' % (float(f1_m[i])*100)) f.write('\n') # 寫出 IOU f.write('Iou:\n') for i in range(class_num): f.write('%.4f\t' % (float(iou_m[i])*100)) f.write('\n')
以上這篇python實(shí)現(xiàn)交并比IOU教程就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
- 如何通過(guò)python實(shí)現(xiàn)IOU計(jì)算代碼實(shí)例
- python shapely.geometry.polygon任意兩個(gè)四邊形的IOU計(jì)算實(shí)例
- python實(shí)現(xiàn)IOU計(jì)算案例
- python:目標(biāo)檢測(cè)模型預(yù)測(cè)準(zhǔn)確度計(jì)算方式(基于IoU)
- python實(shí)現(xiàn)的Iou與Giou代碼
- python不使用for計(jì)算兩組、多個(gè)矩形兩兩間的iou方式
- 淺談Python3實(shí)現(xiàn)兩個(gè)矩形的交并比(IoU)
- python計(jì)算二維矩形IOU實(shí)例
- Python計(jì)算機(jī)視覺(jué)里的IOU計(jì)算實(shí)例
- 解析目標(biāo)檢測(cè)之IoU
相關(guān)文章
Python遠(yuǎn)程SSH庫(kù)Paramiko詳細(xì)操作
paramiko實(shí)現(xiàn)了SSHv2協(xié)議(底層使用cryptography),用于連接遠(yuǎn)程服務(wù)器并執(zhí)行相關(guān)操作,使用該模塊可以對(duì)遠(yuǎn)程服務(wù)器進(jìn)行命令或文件操作,今天通過(guò)本文給大家介紹Python遠(yuǎn)程SSH庫(kù)Paramiko簡(jiǎn)介,感興趣的朋友一起看看吧2022-05-05python將多個(gè)文本文件合并為一個(gè)文本的代碼(便于搜索)
源代碼目錄一般很詳細(xì),每個(gè)代碼文件都不長(zhǎng),一般只占幾十行而已。在跟著書籍學(xué)習(xí)的過(guò)程中,可以打開源代碼運(yùn)行之后查看效果,或者適當(dāng)修改看看變化,這都是很好的掌握技術(shù)的好辦法。2011-03-03基于Python函數(shù)的作用域規(guī)則和閉包(詳解)
下面小編就為大家分享一篇基于Python函數(shù)的作用域規(guī)則和閉包詳解,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2017-11-11python實(shí)現(xiàn)學(xué)生信息管理系統(tǒng)源碼
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)學(xué)生信息管理系統(tǒng)源碼,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2021-02-02Python并發(fā)編程的幾種實(shí)現(xiàn)方式
Python并發(fā)編程讓程序能同時(shí)執(zhí)行多個(gè)任務(wù),Python提供多種并發(fā)實(shí)現(xiàn)方式,包括多線程、多進(jìn)程、異步編程等,多線程受全局解釋器鎖(GIL)影響,在CPU密集型任務(wù)上不提升性能,但適合I/O密集型任務(wù),多進(jìn)程適用于CPU密集型任務(wù)2024-10-10Python使用文件操作實(shí)現(xiàn)一個(gè)XX信息管理系統(tǒng)的示例
這篇文章主要介紹了Python使用文件操作實(shí)現(xiàn)一個(gè)XX信息管理系統(tǒng)的示例,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-07-07Pandas sample隨機(jī)抽樣的實(shí)現(xiàn)
隨機(jī)抽樣,是統(tǒng)計(jì)學(xué)中常用的一種方法,本文主要介紹了Pandas sample隨機(jī)抽樣的實(shí)現(xiàn),文中通過(guò)示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2022-06-06