使用tensorflow框架在Colab上跑通貓狗識別代碼
一、 前提:
有Google賬號(具體怎么注冊賬號這里不詳述,大家都懂的,自行百度)在你的Google郵箱中關(guān)聯(lián)好colab(怎樣在Google郵箱中使用colab在此不詳述,自行百度)
二、 現(xiàn)在開始:
因?yàn)槲覀兪褂玫氖莄olab,所以就不必為安裝版本對應(yīng)的anaconda、python以及tensorflow爾苦惱了,經(jīng)過以下配置就可以直接開始使用了。
在colab中新建代碼塊,運(yùn)行以下代碼來下載需要的數(shù)據(jù)集
# In this exercise you will train a CNN on the FULL Cats-v-dogs dataset # This will require you doing a lot of data preprocessing because # the dataset isn't split into training and validation for you # This code block has all the required inputs import os import zipfile import random import tensorflow as tf from tensorflow.keras.optimizers import RMSprop from tensorflow.keras.preprocessing.image import ImageDataGenerator from shutil import copyfile # This code block downloads the full Cats-v-Dogs dataset and stores it as # cats-and-dogs.zip. It then unzips it to /tmp # which will create a tmp/PetImages directory containing subdirectories # called 'Cat' and 'Dog' (that's how the original researchers structured it) # If the URL doesn't work, # . visit https://www.microsoft.com/en-us/download/confirmation.aspx?id=54765 # And right click on the 'Download Manually' link to get a new URL !wget --no-check-certificate \ "https://github.com/ADlead/Dogs-Cats/archive/master.zip" \ -O "/tmp/cats-and-dogs.zip" local_zip = '/tmp/cats-and-dogs.zip' zip_ref = zipfile.ZipFile(local_zip, 'r') zip_ref.extractall('/tmp') zip_ref.close()
運(yùn)行結(jié)果:
在colab中默認(rèn)安裝TensorFlow1.14,所以會提示讓升級tensorflow,可以不用理會,需要升級為2.0的也可以自行百度去升級。
接下來會提示我們需要的數(shù)據(jù)集以壓縮包的形式已經(jīng)下載好了
運(yùn)行以下代碼來解壓下載好的數(shù)據(jù)集并把訓(xùn)練圖像集劃分成訓(xùn)練圖像集和測試圖像集,分別用于訓(xùn)練模型和測試模型。把25000張圖像劃分成20000張訓(xùn)練圖像和5000張測試圖像。深度學(xué)習(xí)的框架使用的是tensorflow,為了能讓tensorflow分批輸入數(shù)據(jù)進(jìn)行訓(xùn)練,把所有的圖像像素信息存儲成batch文件。訓(xùn)練集100個(gè)batch文件,每個(gè)文件有200張圖像。測試集1個(gè)batch文件,共5000張圖像。
import cv2 as cv import os import numpy as np import random import pickle import time start_time = time.time() data_dir = '/tmp/Dogs-Cats-master/data' batch_save_path = '/tmp/Dogs-Cats-master/batch_files' # 創(chuàng)建batch文件存儲的文件夾 os.makedirs(batch_save_path, exist_ok=True) # 圖片統(tǒng)一大?。?00 * 100 # 訓(xùn)練集 20000:100個(gè)batch文件,每個(gè)文件200張圖片 # 驗(yàn)證集 5000: 一個(gè)測試文件,測試時(shí) 50張 x 100 批次 # 進(jìn)入圖片數(shù)據(jù)的目錄,讀取圖片信息 all_data_files = os.listdir(os.path.join(data_dir, 'train/')) # print(all_data_files) # 打算數(shù)據(jù)的順序 random.shuffle(all_data_files) all_train_files = all_data_files[:20000] all_test_files = all_data_files[20000:] train_data = [] train_label = [] train_filenames = [] test_data = [] test_label = [] test_filenames = [] # 訓(xùn)練集 for each in all_train_files: img = cv.imread(os.path.join(data_dir,'train/',each),1) resized_img = cv.resize(img, (100,100)) img_data = np.array(resized_img) train_data.append(img_data) if 'cat' in each: train_label.append(0) elif 'dog' in each: train_label.append(1) else: raise Exception('%s is wrong train file'%(each)) train_filenames.append(each) # 測試集 for each in all_test_files: img = cv.imread(os.path.join(data_dir,'train/',each), 1) resized_img = cv.resize(img, (100,100)) img_data = np.array(resized_img) test_data.append(img_data) if 'cat' in each: test_label.append(0) elif 'dog' in each: test_label.append(1) else: raise Exception('%s is wrong test file'%(each)) test_filenames.append(each) print(len(train_data), len(test_data)) # 制作100個(gè)batch文件 start = 0 end = 200 for num in range(1, 101): batch_data = train_data[start: end] batch_label = train_label[start: end] batch_filenames = train_filenames[start: end] batch_name = 'training batch {} of 15'.format(num) all_data = { 'data':batch_data, 'label':batch_label, 'filenames':batch_filenames, 'name':batch_name } with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f: pickle.dump(all_data, f) start += 200 end += 200 # 制作測試文件 all_test_data = { 'data':test_data, 'label':test_label, 'filenames':test_filenames, 'name':'test batch 1 of 1' } with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f: pickle.dump(all_test_data, f) end_time = time.time() print('制作結(jié)束, 用時(shí){}秒'.format(end_time - start_time))
運(yùn)行結(jié)果:
運(yùn)行以下編寫卷積層、池化層、全連接層、搭建tensorflow的計(jì)算圖、定義占位符、計(jì)算損失函數(shù)、預(yù)測值、準(zhǔn)確率以及訓(xùn)練部分的代碼
import tensorflow as tf import numpy as np import cv2 as cv import os import pickle ''' 全局參數(shù) ''' IMAGE_SIZE = 100 LEARNING_RATE = 1e-4 TRAIN_STEP = 10000 TRAIN_SIZE = 100 TEST_STEP = 100 TEST_SIZE = 50 IS_TRAIN = True SAVE_PATH = '/tmp/Dogs-Cats-master/model/' data_dir = '/tmp/Dogs-Cats-master/batch_files' pic_path = '/tmp/Dogs-Cats-master/data/test1' '''''' def load_data(filename): '''從batch文件中讀取圖片信息''' with open(filename, 'rb') as f: data = pickle.load(f, encoding='iso-8859-1') return data['data'],data['label'],data['filenames'] # 讀取數(shù)據(jù)的類 class InputData: def __init__(self, filenames, need_shuffle): all_data = [] all_labels = [] all_names = [] for file in filenames: data, labels, filename = load_data(file) all_data.append(data) all_labels.append(labels) all_names += filename self._data = np.vstack(all_data) self._labels = np.hstack(all_labels) print(self._data.shape) print(self._labels.shape) self._filenames = all_names self._num_examples = self._data.shape[0] self._need_shuffle = need_shuffle self._indicator = 0 if self._indicator: self._shuffle_data() def _shuffle_data(self): # 把數(shù)據(jù)再混排 p = np.random.permutation(self._num_examples) self._data = self._data[p] self._labels = self._labels[p] def next_batch(self, batch_size): '''返回每一批次的數(shù)據(jù)''' end_indicator = self._indicator + batch_size if end_indicator > self._num_examples: if self._need_shuffle: self._shuffle_data() self._indicator = 0 end_indicator = batch_size else: raise Exception('have no more examples') if end_indicator > self._num_examples: raise Exception('batch size is larger than all examples') batch_data = self._data[self._indicator : end_indicator] batch_labels = self._labels[self._indicator : end_indicator] batch_filenames = self._filenames[self._indicator : end_indicator] self._indicator = end_indicator return batch_data, batch_labels, batch_filenames # 定義一個(gè)類 class MyTensor: def __init__(self): # 載入訓(xùn)練集和測試集 train_filenames = [os.path.join(data_dir, 'train_batch_%d'%i) for i in range(1, 101)] test_filenames = [os.path.join(data_dir, 'test_batch')] self.batch_train_data = InputData(train_filenames, True) self.batch_test_data = InputData(test_filenames, True) pass def flow(self): self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data') self.y = tf.placeholder(tf.int64, [None], 'output_data') self.keep_prob = tf.placeholder(tf.float32) # self.x = self.x / 255.0 需不需要這一步? # 圖片輸入網(wǎng)絡(luò)中 fc = self.conv_net(self.x, self.keep_prob) self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc) self.y_ = tf.nn.softmax(fc) # 計(jì)算每一類的概率 self.predict = tf.argmax(fc, 1) self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32)) self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss) self.saver = tf.train.Saver(max_to_keep=1) print('計(jì)算流圖已經(jīng)搭建.') # 訓(xùn)練 def myTrain(self): acc_list = [] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(TRAIN_STEP): train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE) eval_ops = [self.loss, self.acc, self.train_op] eval_ops_results = sess.run(eval_ops, feed_dict={ self.x:train_data, self.y:train_label, self.keep_prob:0.7 }) loss_val, train_acc = eval_ops_results[0:2] acc_list.append(train_acc) if (i+1) % 100 == 0: acc_mean = np.mean(acc_list) print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format( i+1,loss_val,train_acc,acc_mean )) if (i+1) % 1000 == 0: test_acc_list = [] for j in range(TEST_STEP): test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE) acc_val = sess.run([self.acc],feed_dict={ self.x:test_data, self.y:test_label, self.keep_prob:1.0 }) test_acc_list.append(acc_val) print('[Test ] step:{0}, mean_acc:{1:.5}'.format( i+1, np.mean(test_acc_list) )) # 保存訓(xùn)練后的模型 os.makedirs(SAVE_PATH, exist_ok=True) self.saver.save(sess, SAVE_PATH + 'my_model.ckpt') def myTest(self): with tf.Session() as sess: model_file = tf.train.latest_checkpoint(SAVE_PATH) model = self.saver.restore(sess, save_path=model_file) test_acc_list = [] predict_list = [] for j in range(TEST_STEP): test_data, test_label, test_name = self.batch_test_data.next_batch(TEST_SIZE) for each_data, each_label, each_name in zip(test_data, test_label, test_name): acc_val, y__, pre, test_img_data = sess.run( [self.acc, self.y_, self.predict, self.x], feed_dict={ self.x:each_data.reshape(1, IMAGE_SIZE, IMAGE_SIZE, 3), self.y:each_label.reshape(1), self.keep_prob:1.0 } ) predict_list.append(pre[0]) test_acc_list.append(acc_val) # 把測試結(jié)果顯示出來 self.compare_test(test_img_data, each_label, pre[0], y__[0], each_name) print('[Test ] mean_acc:{0:.5}'.format(np.mean(test_acc_list))) def compare_test(self, input_image_arr, input_label, output, probability, img_name): classes = ['cat', 'dog'] if input_label == output: result = '正確' else: result = '錯(cuò)誤' print('測試【{0}】,輸入的label:{1}, 預(yù)測得是{2}:{3}的概率:{4:.5}, 輸入的圖片名稱:{5}'.format( result,input_label, output,classes[output], probability[output], img_name )) def conv_net(self, x, keep_prob): conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1') conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2') pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1') conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1') conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2') pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2') conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1') conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2') pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3') conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1') conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2') pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4') flatten = tf.layers.flatten(pool4) # 把網(wǎng)絡(luò)展平,以輸入到后面的全連接層 fc1 = tf.layers.dense(flatten, 512, tf.nn.relu) fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob) fc2 = tf.layers.dense(fc1, 256, tf.nn.relu) fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob) fc3 = tf.layers.dense(fc2, 2, None) # 得到輸出fc3 return fc3 def main(self): self.flow() if IS_TRAIN is True: self.myTrain() else: self.myTest() def final_classify(self): all_test_files_dir = './data/test1' all_test_filenames = os.listdir(all_test_files_dir) if IS_TRAIN is False: self.flow() # self.classify() with tf.Session() as sess: model_file = tf.train.latest_checkpoint(SAVE_PATH) mpdel = self.saver.restore(sess,save_path=model_file) predict_list = [] for each_filename in all_test_filenames: each_data = self.get_img_data(os.path.join(all_test_files_dir,each_filename)) y__, pre, test_img_data = sess.run( [self.y_, self.predict, self.x], feed_dict={ self.x:each_data.reshape(1, IMAGE_SIZE, IMAGE_SIZE, 3), self.keep_prob: 1.0 } ) predict_list.append(pre[0]) self.classify(test_img_data, pre[0], y__[0], each_filename) else: print('now is training model...') def classify(self, input_image_arr, output, probability, img_name): classes = ['cat','dog'] single_image = input_image_arr[0] #* 255 if output == 0: output_dir = 'cat/' else: output_dir = 'dog/' os.makedirs(os.path.join('./classiedResult', output_dir), exist_ok=True) cv.imwrite(os.path.join('./classiedResult',output_dir, img_name),single_image) print('輸入的圖片名稱:{0},預(yù)測得有{1:5}的概率是{2}:{3}'.format( img_name, probability[output], output, classes[output] )) # 根據(jù)名稱獲取圖片像素 def get_img_data(self,img_name): img = cv.imread(img_name) resized_img = cv.resize(img, (100, 100)) img_data = np.array(resized_img) return img_data if __name__ == '__main__': mytensor = MyTensor() mytensor.main() # 用于訓(xùn)練或測試 # mytensor.final_classify() # 用于最后的分類 print('hello world')
運(yùn)行結(jié)果:
參考:https://www.jianshu.com/p/9ee2533c8adb
代碼出處:https://github.com/ADlead/Dogs-Cats.git
到此這篇關(guān)于使用tensorflow框架在Colab上跑通貓狗識別代碼的文章就介紹到這了,更多相關(guān)tensorflow框架在Colab上跑通貓狗識別內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python的Django框架中settings文件的部署建議
這篇文章主要介紹了Python的Django框架中settings文件的部署建議,包括對local_settings的弊病的一些簡單分析,需要的朋友可以參考下2015-05-05python實(shí)現(xiàn)SMTP郵件發(fā)送功能
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)SMTP郵件發(fā)送功能的相關(guān)資料,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2016-05-05Python保留數(shù)據(jù)并刪除Excel單元格的函數(shù)和公式
在分析處理Excel表格時(shí),我們可能需要使用各種公式或函數(shù)對表格數(shù)據(jù)進(jìn)行計(jì)算,從而分析出更多的信息,但在展示、分享或再利用分析結(jié)果時(shí),我們可能需要將含有公式的單元格轉(zhuǎn)換為靜態(tài)數(shù)值,本文將介紹如何使用Python代碼批量移除Excel單元格中的公式并保留數(shù)值2024-10-10python支持同時(shí)存在多個(gè)版本的操作步驟
這篇文章主要介紹了python支持同時(shí)存在多個(gè)版本的操作步驟,在已有Python 3.8的情況下,安裝新的Python 3.9版本,感興趣的小伙伴可以參考文中步驟,文章中介紹的非常詳細(xì),需要的朋友可以參考下2024-03-03Django?url.py?path?name同一app下路由別名定義
這篇文章主要為大家介紹了Django?url.py?path?name同一app下路由別名定義詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-07-07