使用tensorflow框架在Colab上跑通貓狗識(shí)別代碼
一、 前提:
有Google賬號(hào)(具體怎么注冊(cè)賬號(hào)這里不詳述,大家都懂的,自行百度)在你的Google郵箱中關(guān)聯(lián)好colab(怎樣在Google郵箱中使用colab在此不詳述,自行百度)
二、 現(xiàn)在開始:
因?yàn)槲覀兪褂玫氖莄olab,所以就不必為安裝版本對(duì)應(yīng)的anaconda、python以及tensorflow爾苦惱了,經(jīng)過以下配置就可以直接開始使用了。



在colab中新建代碼塊,運(yùn)行以下代碼來下載需要的數(shù)據(jù)集
# In this exercise you will train a CNN on the FULL Cats-v-dogs dataset
# This will require you doing a lot of data preprocessing because
# the dataset isn't split into training and validation for you
# This code block has all the required inputs
import os
import zipfile
import random
import tensorflow as tf
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from shutil import copyfile
# This code block downloads the full Cats-v-Dogs dataset and stores it as
# cats-and-dogs.zip. It then unzips it to /tmp
# which will create a tmp/PetImages directory containing subdirectories
# called 'Cat' and 'Dog' (that's how the original researchers structured it)
# If the URL doesn't work,
# . visit https://www.microsoft.com/en-us/download/confirmation.aspx?id=54765
# And right click on the 'Download Manually' link to get a new URL
!wget --no-check-certificate \
"https://github.com/ADlead/Dogs-Cats/archive/master.zip" \
-O "/tmp/cats-and-dogs.zip"
local_zip = '/tmp/cats-and-dogs.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('/tmp')
zip_ref.close()
運(yùn)行結(jié)果:
在colab中默認(rèn)安裝TensorFlow1.14,所以會(huì)提示讓升級(jí)tensorflow,可以不用理會(huì),需要升級(jí)為2.0的也可以自行百度去升級(jí)。
接下來會(huì)提示我們需要的數(shù)據(jù)集以壓縮包的形式已經(jīng)下載好了


運(yùn)行以下代碼來解壓下載好的數(shù)據(jù)集并把訓(xùn)練圖像集劃分成訓(xùn)練圖像集和測(cè)試圖像集,分別用于訓(xùn)練模型和測(cè)試模型。把25000張圖像劃分成20000張訓(xùn)練圖像和5000張測(cè)試圖像。深度學(xué)習(xí)的框架使用的是tensorflow,為了能讓tensorflow分批輸入數(shù)據(jù)進(jìn)行訓(xùn)練,把所有的圖像像素信息存儲(chǔ)成batch文件。訓(xùn)練集100個(gè)batch文件,每個(gè)文件有200張圖像。測(cè)試集1個(gè)batch文件,共5000張圖像。
import cv2 as cv
import os
import numpy as np
import random
import pickle
import time
start_time = time.time()
data_dir = '/tmp/Dogs-Cats-master/data'
batch_save_path = '/tmp/Dogs-Cats-master/batch_files'
# 創(chuàng)建batch文件存儲(chǔ)的文件夾
os.makedirs(batch_save_path, exist_ok=True)
# 圖片統(tǒng)一大?。?00 * 100
# 訓(xùn)練集 20000:100個(gè)batch文件,每個(gè)文件200張圖片
# 驗(yàn)證集 5000: 一個(gè)測(cè)試文件,測(cè)試時(shí) 50張 x 100 批次
# 進(jìn)入圖片數(shù)據(jù)的目錄,讀取圖片信息
all_data_files = os.listdir(os.path.join(data_dir, 'train/'))
# print(all_data_files)
# 打算數(shù)據(jù)的順序
random.shuffle(all_data_files)
all_train_files = all_data_files[:20000]
all_test_files = all_data_files[20000:]
train_data = []
train_label = []
train_filenames = []
test_data = []
test_label = []
test_filenames = []
# 訓(xùn)練集
for each in all_train_files:
img = cv.imread(os.path.join(data_dir,'train/',each),1)
resized_img = cv.resize(img, (100,100))
img_data = np.array(resized_img)
train_data.append(img_data)
if 'cat' in each:
train_label.append(0)
elif 'dog' in each:
train_label.append(1)
else:
raise Exception('%s is wrong train file'%(each))
train_filenames.append(each)
# 測(cè)試集
for each in all_test_files:
img = cv.imread(os.path.join(data_dir,'train/',each), 1)
resized_img = cv.resize(img, (100,100))
img_data = np.array(resized_img)
test_data.append(img_data)
if 'cat' in each:
test_label.append(0)
elif 'dog' in each:
test_label.append(1)
else:
raise Exception('%s is wrong test file'%(each))
test_filenames.append(each)
print(len(train_data), len(test_data))
# 制作100個(gè)batch文件
start = 0
end = 200
for num in range(1, 101):
batch_data = train_data[start: end]
batch_label = train_label[start: end]
batch_filenames = train_filenames[start: end]
batch_name = 'training batch {} of 15'.format(num)
all_data = {
'data':batch_data,
'label':batch_label,
'filenames':batch_filenames,
'name':batch_name
}
with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:
pickle.dump(all_data, f)
start += 200
end += 200
# 制作測(cè)試文件
all_test_data = {
'data':test_data,
'label':test_label,
'filenames':test_filenames,
'name':'test batch 1 of 1'
}
with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:
pickle.dump(all_test_data, f)
end_time = time.time()
print('制作結(jié)束, 用時(shí){}秒'.format(end_time - start_time))
運(yùn)行結(jié)果:


運(yùn)行以下編寫卷積層、池化層、全連接層、搭建tensorflow的計(jì)算圖、定義占位符、計(jì)算損失函數(shù)、預(yù)測(cè)值、準(zhǔn)確率以及訓(xùn)練部分的代碼
import tensorflow as tf
import numpy as np
import cv2 as cv
import os
import pickle
''' 全局參數(shù) '''
IMAGE_SIZE = 100
LEARNING_RATE = 1e-4
TRAIN_STEP = 10000
TRAIN_SIZE = 100
TEST_STEP = 100
TEST_SIZE = 50
IS_TRAIN = True
SAVE_PATH = '/tmp/Dogs-Cats-master/model/'
data_dir = '/tmp/Dogs-Cats-master/batch_files'
pic_path = '/tmp/Dogs-Cats-master/data/test1'
''''''
def load_data(filename):
'''從batch文件中讀取圖片信息'''
with open(filename, 'rb') as f:
data = pickle.load(f, encoding='iso-8859-1')
return data['data'],data['label'],data['filenames']
# 讀取數(shù)據(jù)的類
class InputData:
def __init__(self, filenames, need_shuffle):
all_data = []
all_labels = []
all_names = []
for file in filenames:
data, labels, filename = load_data(file)
all_data.append(data)
all_labels.append(labels)
all_names += filename
self._data = np.vstack(all_data)
self._labels = np.hstack(all_labels)
print(self._data.shape)
print(self._labels.shape)
self._filenames = all_names
self._num_examples = self._data.shape[0]
self._need_shuffle = need_shuffle
self._indicator = 0
if self._indicator:
self._shuffle_data()
def _shuffle_data(self):
# 把數(shù)據(jù)再混排
p = np.random.permutation(self._num_examples)
self._data = self._data[p]
self._labels = self._labels[p]
def next_batch(self, batch_size):
'''返回每一批次的數(shù)據(jù)'''
end_indicator = self._indicator + batch_size
if end_indicator > self._num_examples:
if self._need_shuffle:
self._shuffle_data()
self._indicator = 0
end_indicator = batch_size
else:
raise Exception('have no more examples')
if end_indicator > self._num_examples:
raise Exception('batch size is larger than all examples')
batch_data = self._data[self._indicator : end_indicator]
batch_labels = self._labels[self._indicator : end_indicator]
batch_filenames = self._filenames[self._indicator : end_indicator]
self._indicator = end_indicator
return batch_data, batch_labels, batch_filenames
# 定義一個(gè)類
class MyTensor:
def __init__(self):
# 載入訓(xùn)練集和測(cè)試集
train_filenames = [os.path.join(data_dir, 'train_batch_%d'%i) for i in range(1, 101)]
test_filenames = [os.path.join(data_dir, 'test_batch')]
self.batch_train_data = InputData(train_filenames, True)
self.batch_test_data = InputData(test_filenames, True)
pass
def flow(self):
self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
self.y = tf.placeholder(tf.int64, [None], 'output_data')
self.keep_prob = tf.placeholder(tf.float32)
# self.x = self.x / 255.0 需不需要這一步?
# 圖片輸入網(wǎng)絡(luò)中
fc = self.conv_net(self.x, self.keep_prob)
self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
self.y_ = tf.nn.softmax(fc) # 計(jì)算每一類的概率
self.predict = tf.argmax(fc, 1)
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)
print('計(jì)算流圖已經(jīng)搭建.')
# 訓(xùn)練
def myTrain(self):
acc_list = []
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(TRAIN_STEP):
train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)
eval_ops = [self.loss, self.acc, self.train_op]
eval_ops_results = sess.run(eval_ops, feed_dict={
self.x:train_data,
self.y:train_label,
self.keep_prob:0.7
})
loss_val, train_acc = eval_ops_results[0:2]
acc_list.append(train_acc)
if (i+1) % 100 == 0:
acc_mean = np.mean(acc_list)
print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(
i+1,loss_val,train_acc,acc_mean
))
if (i+1) % 1000 == 0:
test_acc_list = []
for j in range(TEST_STEP):
test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)
acc_val = sess.run([self.acc],feed_dict={
self.x:test_data,
self.y:test_label,
self.keep_prob:1.0
})
test_acc_list.append(acc_val)
print('[Test ] step:{0}, mean_acc:{1:.5}'.format(
i+1, np.mean(test_acc_list)
))
# 保存訓(xùn)練后的模型
os.makedirs(SAVE_PATH, exist_ok=True)
self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')
def myTest(self):
with tf.Session() as sess:
model_file = tf.train.latest_checkpoint(SAVE_PATH)
model = self.saver.restore(sess, save_path=model_file)
test_acc_list = []
predict_list = []
for j in range(TEST_STEP):
test_data, test_label, test_name = self.batch_test_data.next_batch(TEST_SIZE)
for each_data, each_label, each_name in zip(test_data, test_label, test_name):
acc_val, y__, pre, test_img_data = sess.run(
[self.acc, self.y_, self.predict, self.x],
feed_dict={
self.x:each_data.reshape(1, IMAGE_SIZE, IMAGE_SIZE, 3),
self.y:each_label.reshape(1),
self.keep_prob:1.0
}
)
predict_list.append(pre[0])
test_acc_list.append(acc_val)
# 把測(cè)試結(jié)果顯示出來
self.compare_test(test_img_data, each_label, pre[0], y__[0], each_name)
print('[Test ] mean_acc:{0:.5}'.format(np.mean(test_acc_list)))
def compare_test(self, input_image_arr, input_label, output, probability, img_name):
classes = ['cat', 'dog']
if input_label == output:
result = '正確'
else:
result = '錯(cuò)誤'
print('測(cè)試【{0}】,輸入的label:{1}, 預(yù)測(cè)得是{2}:{3}的概率:{4:.5}, 輸入的圖片名稱:{5}'.format(
result,input_label, output,classes[output], probability[output], img_name
))
def conv_net(self, x, keep_prob):
conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')
flatten = tf.layers.flatten(pool4) # 把網(wǎng)絡(luò)展平,以輸入到后面的全連接層
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None) # 得到輸出fc3
return fc3
def main(self):
self.flow()
if IS_TRAIN is True:
self.myTrain()
else:
self.myTest()
def final_classify(self):
all_test_files_dir = './data/test1'
all_test_filenames = os.listdir(all_test_files_dir)
if IS_TRAIN is False:
self.flow()
# self.classify()
with tf.Session() as sess:
model_file = tf.train.latest_checkpoint(SAVE_PATH)
mpdel = self.saver.restore(sess,save_path=model_file)
predict_list = []
for each_filename in all_test_filenames:
each_data = self.get_img_data(os.path.join(all_test_files_dir,each_filename))
y__, pre, test_img_data = sess.run(
[self.y_, self.predict, self.x],
feed_dict={
self.x:each_data.reshape(1, IMAGE_SIZE, IMAGE_SIZE, 3),
self.keep_prob: 1.0
}
)
predict_list.append(pre[0])
self.classify(test_img_data, pre[0], y__[0], each_filename)
else:
print('now is training model...')
def classify(self, input_image_arr, output, probability, img_name):
classes = ['cat','dog']
single_image = input_image_arr[0] #* 255
if output == 0:
output_dir = 'cat/'
else:
output_dir = 'dog/'
os.makedirs(os.path.join('./classiedResult', output_dir), exist_ok=True)
cv.imwrite(os.path.join('./classiedResult',output_dir, img_name),single_image)
print('輸入的圖片名稱:{0},預(yù)測(cè)得有{1:5}的概率是{2}:{3}'.format(
img_name,
probability[output],
output,
classes[output]
))
# 根據(jù)名稱獲取圖片像素
def get_img_data(self,img_name):
img = cv.imread(img_name)
resized_img = cv.resize(img, (100, 100))
img_data = np.array(resized_img)
return img_data
if __name__ == '__main__':
mytensor = MyTensor()
mytensor.main() # 用于訓(xùn)練或測(cè)試
# mytensor.final_classify() # 用于最后的分類
print('hello world')
運(yùn)行結(jié)果:

參考:https://www.jianshu.com/p/9ee2533c8adb
代碼出處:https://github.com/ADlead/Dogs-Cats.git
到此這篇關(guān)于使用tensorflow框架在Colab上跑通貓狗識(shí)別代碼的文章就介紹到這了,更多相關(guān)tensorflow框架在Colab上跑通貓狗識(shí)別內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python的Django框架中settings文件的部署建議
這篇文章主要介紹了Python的Django框架中settings文件的部署建議,包括對(duì)local_settings的弊病的一些簡(jiǎn)單分析,需要的朋友可以參考下2015-05-05
python實(shí)現(xiàn)SMTP郵件發(fā)送功能
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)SMTP郵件發(fā)送功能的相關(guān)資料,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2016-05-05
Python保留數(shù)據(jù)并刪除Excel單元格的函數(shù)和公式
在分析處理Excel表格時(shí),我們可能需要使用各種公式或函數(shù)對(duì)表格數(shù)據(jù)進(jìn)行計(jì)算,從而分析出更多的信息,但在展示、分享或再利用分析結(jié)果時(shí),我們可能需要將含有公式的單元格轉(zhuǎn)換為靜態(tài)數(shù)值,本文將介紹如何使用Python代碼批量移除Excel單元格中的公式并保留數(shù)值2024-10-10
python支持同時(shí)存在多個(gè)版本的操作步驟
這篇文章主要介紹了python支持同時(shí)存在多個(gè)版本的操作步驟,在已有Python 3.8的情況下,安裝新的Python 3.9版本,感興趣的小伙伴可以參考文中步驟,文章中介紹的非常詳細(xì),需要的朋友可以參考下2024-03-03
Django?url.py?path?name同一app下路由別名定義
這篇文章主要為大家介紹了Django?url.py?path?name同一app下路由別名定義詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-07-07

