opencv 查找連通區(qū)域 最大面積實(shí)例
今天在弄一個(gè)查找連通的最大面積的問(wèn)題。
要把圖像弄成黑底,白字,這樣才可以正確找到。
然后調(diào)用下邊的方法:
RETR_CCOMP:提取所有輪廓,并將輪廓組織成雙層結(jié)構(gòu)(two-level hierarchy),頂層為連通域的外圍邊界,次層位內(nèi)層邊界
#include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> using namespace cv; using namespace std; int main( int argc, char** argv ) { Mat src = imread( argv[1] ); int largest_area=0; int largest_contour_index=0; Rect bounding_rect; Mat thr; cvtColor( src, thr, COLOR_BGR2GRAY ); //Convert to gray threshold( thr, thr, 125, 255, THRESH_BINARY ); //Threshold the gray bitwise_not(thr,thr); //這里先變反轉(zhuǎn)顏色 vector<vector<Point> > contours; // Vector for storing contours findContours( thr, contours, RETR_CCOMP, CHAIN_APPROX_SIMPLE ); // Find the contours in the image for( size_t i = 0; i< contours.size(); i++ ) // iterate through each contour. { double area = contourArea( contours[i] ); // Find the area of contour if( area > largest_area ) { largest_area = area; largest_contour_index = i; //Store the index of largest contour bounding_rect = boundingRect( contours[i] ); // Find the bounding rectangle for biggest contour } } drawContours( src, contours,largest_contour_index, Scalar( 0, 255, 0 ), 2 ); // Draw the largest contour using previously stored index. imshow( "result", src ); waitKey(); return 0; }
方法二: connectedComponentsWithStats
std::pair< int , int > MaxAreaFromSource(Mat srcImage, Mat &dstImage, int index) { /* vector<vector<cv::Point> > contours; // Vector for storing contours int largest_area=0; size_t largest_contour_index=0; Rect bounding_rect; findContours( srcImage, contours, RETR_CCOMP, CHAIN_APPROX_SIMPLE ); // Find the contours in the image for( size_t i = 0; i< contours.size(); i++ ) // iterate through each contour. { double area = contourArea( contours[i] ); // Find the area of contour if( area > largest_area ) { largest_area = area; largest_contour_index = i; //Store the index of largest contour bounding_rect = boundingRect( contours[i] ); // Find the bounding rectangle for biggest contour } } Mat dst; cvtColor(srcImage, dst, CV_GRAY2RGB); drawContours( dst, contours,largest_contour_index, Scalar( 0, 255, 0 ), 2 ); // Draw the largest contour using previously stored index. imshow( "result", dst ); waitKey(); printf("%%%%%%%%%%%max area:%d\n", largest_area); return make_pair( largest_area, index); */ cv::Mat img_bool, labels, stats, centroids, img_color, img_gray; //連通域計(jì)算 int nccomps = cv::connectedComponentsWithStats ( srcImage, //二值圖像 labels, //和原圖一樣大的標(biāo)記圖 stats, //nccomps×5的矩陣 表示每個(gè)連通區(qū)域的外接矩形和面積(pixel) centroids //nccomps×2的矩陣 表示每個(gè)連通區(qū)域的質(zhì)心 ); //cv::imshow("labels", labels); //cv::waitKey(); vector<cv::Vec3b> colors(nccomps); colors[0] = cv::Vec3b(0,0,0); // background pixels remain black. printf( "index:%d==================\n",index ); vector< int >vec_width,vec_area,vec_height; for(int label = 1; label < nccomps; ++label) { colors[label] = cv::Vec3b( (std::rand()&255), (std::rand()&255), (std::rand()&255) ); std::cout << "Component "<< label << std::endl; std::cout << "CC_STAT_LEFT = " << stats.at<int>(label,cv::CC_STAT_LEFT) << std::endl; std::cout << "CC_STAT_TOP = " << stats.at<int>(label,cv::CC_STAT_TOP) << std::endl; std::cout << "CC_STAT_WIDTH = " << stats.at<int>(label,cv::CC_STAT_WIDTH) << std::endl; std::cout << "CC_STAT_HEIGHT = " << stats.at<int>(label,cv::CC_STAT_HEIGHT) << std::endl; std::cout << "CC_STAT_AREA = " << stats.at<int>(label,cv::CC_STAT_AREA) << std::endl; std::cout << "CENTER = (" << centroids.at<double>(label, 0) <<","<< centroids.at<double>(label, 1) << ")"<< std::endl << std::endl; int area = stats.at<int>(label,cv::CC_STAT_AREA); int left = stats.at<int>(label,cv::CC_STAT_LEFT); int top = stats.at<int>(label,cv::CC_STAT_TOP); int width = stats.at<int>(label,cv::CC_STAT_WIDTH); int height = stats.at<int>(label,cv::CC_STAT_HEIGHT); vec_area.push_back(area); vec_width.push_back(width); vec_height.push_back(height); } vector<int>::iterator bigwidth = std::max_element(std::begin(vec_width), std::end(vec_width)); vector<int>::iterator bigheight = std::max_element(std::begin(vec_height), std::end(vec_height)); vector<int>::iterator bigarea = std::max_element(std::begin(vec_area), std::end(vec_area)); //printf( "area:%d------------width:%d height:%d \n", *bigarea, *bigwidth, *bigheight ); //按照l(shuí)abel值,對(duì)不同的連通域進(jìn)行著色 img_color = cv::Mat::zeros(srcImage.size(), CV_8UC3); for( int y = 0; y < img_color.rows; y++ ) for( int x = 0; x < img_color.cols; x++ ) { int label = labels.at<int>(y, x); CV_Assert(0 <= label && label <= nccomps); img_color.at<cv::Vec3b>(y, x) = colors[label]; } cv::imshow("color", img_color); cv::waitKey(); return make_pair( *bigarea , index ); }
我先用這個(gè)函數(shù)實(shí)現(xiàn)了一下,效果正確,還是opencv demo 是正確的,網(wǎng)上找了個(gè)例子,害死我了。
說(shuō)明一下:方法一 比 第二種方法 運(yùn)行速度快很多哦! 這一點(diǎn)很重要。
以上這篇opencv 查找連通區(qū)域 最大面積實(shí)例就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python微醫(yī)掛號(hào)網(wǎng)醫(yī)生數(shù)據(jù)抓取
今天小編就為大家分享一篇關(guān)于Python微醫(yī)掛號(hào)網(wǎng)醫(yī)生數(shù)據(jù)抓取,小編覺(jué)得內(nèi)容挺不錯(cuò)的,現(xiàn)在分享給大家,具有很好的參考價(jià)值,需要的朋友一起跟隨小編來(lái)看看吧2019-01-01使用Pandas實(shí)現(xiàn)清洗客戶(hù)編碼異常數(shù)據(jù)
在不同行業(yè)中,我們經(jīng)常會(huì)遇到一個(gè)麻煩的問(wèn)題:數(shù)據(jù)清洗,尤其是當(dāng)我們需要處理客戶(hù)編碼異常數(shù)據(jù)時(shí),下面小編就來(lái)和大家分享一下常用的解決辦法吧2023-07-07python3中利用filter函數(shù)輸出小于某個(gè)數(shù)的所有回文數(shù)實(shí)例
今天小編就為大家分享一篇 python3中利用filter函數(shù)輸出小于某個(gè)數(shù)的所有回文數(shù)實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-11-11python爬蟲(chóng)開(kāi)發(fā)之使用Python爬蟲(chóng)庫(kù)requests多線(xiàn)程抓取貓眼電影TOP100實(shí)例
這篇文章主要介紹了python爬蟲(chóng)開(kāi)發(fā)之使用Python爬蟲(chóng)庫(kù)requests多線(xiàn)程抓取貓眼電影TOP100實(shí)例,需要的朋友可以參考下2020-03-03跟老齊學(xué)Python之讓人歡喜讓人憂(yōu)的迭代
跟一些比較牛X的程序員交流,經(jīng)常聽(tīng)到他們嘴里冒出一個(gè)不標(biāo)準(zhǔn)的英文單詞,而loop、iterate、traversal和recursion如果不在其內(nèi),總覺(jué)得他還不夠牛X。當(dāng)讓?zhuān)嬲的絕對(duì)不會(huì)這么說(shuō)的,他們只是說(shuō)“循環(huán)、迭代、遍歷、遞歸”,然后再問(wèn)“這個(gè)你懂嗎?”。2014-10-10