Keras—embedding嵌入層的用法詳解
最近在工作中進(jìn)行了NLP的內(nèi)容,使用的還是Keras中embedding的詞嵌入來做的。
Keras中embedding層做一下介紹。
中文文檔地址:https://keras.io/zh/layers/embeddings/
參數(shù)如下:

其中參數(shù)重點(diǎn)有input_dim,output_dim,非必選參數(shù)input_length.
初始化方法參數(shù)設(shè)置后面會(huì)單獨(dú)總結(jié)一下。
demo使用預(yù)訓(xùn)練(使用百度百科(word2vec)的語料庫)參考
embedding使用的demo參考:
def create_embedding(word_index, num_words, word2vec_model): embedding_matrix = np.zeros((num_words, EMBEDDING_DIM)) for word, i in word_index.items(): try: embedding_vector = word2vec_model[word] embedding_matrix[i] = embedding_vector except: continue return embedding_matrix #word_index:詞典(統(tǒng)計(jì)詞轉(zhuǎn)換為索引) #num_word:詞典長(zhǎng)度+1 #word2vec_model:詞向量的model
加載詞向量model的方法:
def pre_load_embedding_model(model_file): # model = gensim.models.Word2Vec.load(model_file) # model = gensim.models.Word2Vec.load(model_file,binary=True) model = gensim.models.KeyedVectors.load_word2vec_format(model_file) return model
model中Embedding層的設(shè)置(注意參數(shù),Input層的輸入,初始化方法):
embedding_matrix = create_embedding(word_index, num_words, word2vec_model)
embedding_layer = Embedding(num_words,
EMBEDDING_DIM,
embeddings_initializer=Constant(embedding_matrix),
input_length=MAX_SEQUENCE_LENGTH,
trainable=False)
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)
embedding層的初始化設(shè)置
keras embeding設(shè)置初始值的兩種方式
隨機(jī)初始化Embedding
from keras.models import Sequential
from keras.layers import Embedding
import numpy as np
model = Sequential()
model.add(Embedding(1000, 64, input_length=10))
# the model will take as input an integer matrix of size (batch, input_length).
# the largest integer (i.e. word index) in the input should be no larger than 999 (vocabulary size).
# now model.output_shape == (None, 10, 64), where None is the batch dimension.
input_array = np.random.randint(1000, size=(32, 10))
model.compile('rmsprop', 'mse')
output_array = model.predict(input_array)
print(output_array)
assert output_array.shape == (32, 10, 64)
使用weights參數(shù)指明embedding初始值
import numpy as np import keras m = keras.models.Sequential() """ 可以通過weights參數(shù)指定初始的weights參數(shù) 因?yàn)镋mbedding層是不可導(dǎo)的 梯度東流至此回,所以把embedding放在中間層是沒有意義的,emebedding只能作為第一層 注意weights到embeddings的綁定過程很復(fù)雜,weights是一個(gè)列表 """ embedding = keras.layers.Embedding(input_dim=3, output_dim=2, input_length=1, weights=[np.arange(3 * 2).reshape((3, 2))], mask_zero=True) m.add(embedding) # 一旦add,就會(huì)自動(dòng)調(diào)用embedding的build函數(shù), print(keras.backend.get_value(embedding.embeddings)) m.compile(keras.optimizers.RMSprop(), keras.losses.mse) print(m.predict([1, 2, 2, 1, 2, 0])) print(m.get_layer(index=0).get_weights()) print(keras.backend.get_value(embedding.embeddings))
給embedding設(shè)置初始值的第二種方式:使用initializer
import numpy as np import keras m = keras.models.Sequential() """ 可以通過weights參數(shù)指定初始的weights參數(shù) 因?yàn)镋mbedding層是不可導(dǎo)的 梯度東流至此回,所以把embedding放在中間層是沒有意義的,emebedding只能作為第一層 給embedding設(shè)置權(quán)值的第二種方式,使用constant_initializer """ embedding = keras.layers.Embedding(input_dim=3, output_dim=2, input_length=1, embeddings_initializer=keras.initializers.constant(np.arange(3 * 2, dtype=np.float32).reshape((3, 2)))) m.add(embedding) print(keras.backend.get_value(embedding.embeddings)) m.compile(keras.optimizers.RMSprop(), keras.losses.mse) print(m.predict([1, 2, 2, 1, 2])) print(m.get_layer(index=0).get_weights()) print(keras.backend.get_value(embedding.embeddings))
關(guān)鍵的難點(diǎn)在于理清weights是怎么傳入到embedding.embeddings張量里面去的。
Embedding是一個(gè)層,繼承自Layer,Layer有weights參數(shù),weights參數(shù)是一個(gè)list,里面的元素都是numpy數(shù)組。在調(diào)用Layer的構(gòu)造函數(shù)的時(shí)候,weights參數(shù)就被存儲(chǔ)到了_initial_weights變量
basic_layer.py 之Layer類
if 'weights' in kwargs: self._initial_weights = kwargs['weights'] else: self._initial_weights = None
當(dāng)把Embedding層添加到模型中、跟模型的上一層進(jìn)行拼接的時(shí)候,會(huì)調(diào)用layer(上一層)函數(shù),此處layer是Embedding實(shí)例,Embedding是一個(gè)繼承了Layer的類,Embedding類沒有重寫__call__()方法,Layer實(shí)現(xiàn)了__call__()方法。
父類Layer的__call__方法調(diào)用子類的call()方法來獲取結(jié)果。
所以最終調(diào)用的是Layer.__call__()。在這個(gè)方法中,會(huì)自動(dòng)檢測(cè)該層是否build過(根據(jù)self.built布爾變量)。
Layer.__call__函數(shù)非常重要。
def __call__(self, inputs, **kwargs):
"""Wrapper around self.call(), for handling internal references.
If a Keras tensor is passed:
- We call self._add_inbound_node().
- If necessary, we `build` the layer to match
the _keras_shape of the input(s).
- We update the _keras_shape of every input tensor with
its new shape (obtained via self.compute_output_shape).
This is done as part of _add_inbound_node().
- We update the _keras_history of the output tensor(s)
with the current layer.
This is done as part of _add_inbound_node().
# Arguments
inputs: Can be a tensor or list/tuple of tensors.
**kwargs: Additional keyword arguments to be passed to `call()`.
# Returns
Output of the layer's `call` method.
# Raises
ValueError: in case the layer is missing shape information
for its `build` call.
"""
if isinstance(inputs, list):
inputs = inputs[:]
with K.name_scope(self.name):
# Handle laying building (weight creating, input spec locking).
if not self.built:#如果未曾build,那就要先執(zhí)行build再調(diào)用call函數(shù)
# Raise exceptions in case the input is not compatible
# with the input_spec specified in the layer constructor.
self.assert_input_compatibility(inputs)
# Collect input shapes to build layer.
input_shapes = []
for x_elem in to_list(inputs):
if hasattr(x_elem, '_keras_shape'):
input_shapes.append(x_elem._keras_shape)
elif hasattr(K, 'int_shape'):
input_shapes.append(K.int_shape(x_elem))
else:
raise ValueError('You tried to call layer "' +
self.name +
'". This layer has no information'
' about its expected input shape, '
'and thus cannot be built. '
'You can build it manually via: '
'`layer.build(batch_input_shape)`')
self.build(unpack_singleton(input_shapes))
self.built = True#這句話其實(shí)有些多余,因?yàn)閟elf.build函數(shù)已經(jīng)把built置為True了
# Load weights that were specified at layer instantiation.
if self._initial_weights is not None:#如果傳入了weights,把weights參數(shù)賦值到每個(gè)變量,此處會(huì)覆蓋上面的self.build函數(shù)中的賦值。
self.set_weights(self._initial_weights)
# Raise exceptions in case the input is not compatible
# with the input_spec set at build time.
self.assert_input_compatibility(inputs)
# Handle mask propagation.
previous_mask = _collect_previous_mask(inputs)
user_kwargs = copy.copy(kwargs)
if not is_all_none(previous_mask):
# The previous layer generated a mask.
if has_arg(self.call, 'mask'):
if 'mask' not in kwargs:
# If mask is explicitly passed to __call__,
# we should override the default mask.
kwargs['mask'] = previous_mask
# Handle automatic shape inference (only useful for Theano).
input_shape = _collect_input_shape(inputs)
# Actually call the layer,
# collecting output(s), mask(s), and shape(s).
output = self.call(inputs, **kwargs)
output_mask = self.compute_mask(inputs, previous_mask)
# If the layer returns tensors from its inputs, unmodified,
# we copy them to avoid loss of tensor metadata.
output_ls = to_list(output)
inputs_ls = to_list(inputs)
output_ls_copy = []
for x in output_ls:
if x in inputs_ls:
x = K.identity(x)
output_ls_copy.append(x)
output = unpack_singleton(output_ls_copy)
# Inferring the output shape is only relevant for Theano.
if all([s is not None
for s in to_list(input_shape)]):
output_shape = self.compute_output_shape(input_shape)
else:
if isinstance(input_shape, list):
output_shape = [None for _ in input_shape]
else:
output_shape = None
if (not isinstance(output_mask, (list, tuple)) and
len(output_ls) > 1):
# Augment the mask to match the length of the output.
output_mask = [output_mask] * len(output_ls)
# Add an inbound node to the layer, so that it keeps track
# of the call and of all new variables created during the call.
# This also updates the layer history of the output tensor(s).
# If the input tensor(s) had not previous Keras history,
# this does nothing.
self._add_inbound_node(input_tensors=inputs,
output_tensors=output,
input_masks=previous_mask,
output_masks=output_mask,
input_shapes=input_shape,
output_shapes=output_shape,
arguments=user_kwargs)
# Apply activity regularizer if any:
if (hasattr(self, 'activity_regularizer') and
self.activity_regularizer is not None):
with K.name_scope('activity_regularizer'):
regularization_losses = [
self.activity_regularizer(x)
for x in to_list(output)]
self.add_loss(regularization_losses,
inputs=to_list(inputs))
return output
如果沒有build過,會(huì)自動(dòng)調(diào)用Embedding類的build()函數(shù)。Embedding.build()這個(gè)函數(shù)并不會(huì)去管weights,如果它使用的initializer沒有傳入,self.embeddings_initializer會(huì)變成隨機(jī)初始化。
如果傳入了,那么在這一步就能夠把weights初始化好。
如果同時(shí)傳入embeddings_initializer和weights參數(shù),那么weights參數(shù)稍后會(huì)把Embedding#embeddings覆蓋掉。
embedding.py Embedding類的build函數(shù)
def build(self, input_shape): self.embeddings = self.add_weight( shape=(self.input_dim, self.output_dim), initializer=self.embeddings_initializer, name='embeddings', regularizer=self.embeddings_regularizer, constraint=self.embeddings_constraint, dtype=self.dtype) self.built = True
綜上,在keras中,使用weights給Layer的變量賦值是一個(gè)比較通用的方法,但是不夠直觀。keras鼓勵(lì)多多使用明確的initializer,而盡量不要觸碰weights。
以上這篇Keras—embedding嵌入層的用法詳解就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Ubuntu權(quán)限不足無法創(chuàng)建文件夾解決方案
這篇文章主要介紹了Ubuntu權(quán)限不足無法創(chuàng)建文件夾解決方案,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-11-11
使用python畫社交網(wǎng)絡(luò)圖實(shí)例代碼
這篇文章主要給大家介紹了關(guān)于如何使用python畫社交網(wǎng)絡(luò)圖的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家學(xué)習(xí)或者使用python具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面來一起學(xué)習(xí)學(xué)習(xí)吧2019-07-07
python?opencv背景減去法摳圖實(shí)現(xiàn)示例
這篇文章主要為大家介紹了python?opencv背景減去法摳圖實(shí)現(xiàn)示例,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-05-05
python數(shù)據(jù)預(yù)處理 :數(shù)據(jù)共線性處理詳解
今天小編就為大家分享一篇python數(shù)據(jù)預(yù)處理 :數(shù)據(jù)共線性處理詳解,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2020-02-02
Pandas設(shè)置DataFrame的index索引起始值為1的兩種方法
DataFrame中的index索引列默認(rèn)是從0開始的,那么我們?nèi)绾卧O(shè)置index索引列起始值從1開始呢,本文主要介紹了Pandas設(shè)置DataFrame的index索引起始值為1的兩種方法,感興趣的可以了解一下2024-07-07
Python namedtuple命名元組實(shí)現(xiàn)過程解析
這篇文章主要介紹了Python namedtuple命名元組實(shí)現(xiàn)過程解析,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-01-01

