python實(shí)現(xiàn)二分類和多分類的ROC曲線教程
基本概念
precision:預(yù)測為對的當(dāng)中,原本為對的比例(越大越好,1為理想狀態(tài))
recall:原本為對的當(dāng)中,預(yù)測為對的比例(越大越好,1為理想狀態(tài))
F-measure:F度量是對準(zhǔn)確率和召回率做一個(gè)權(quán)衡(越大越好,1為理想狀態(tài),此時(shí)precision為1,recall為1)
accuracy:預(yù)測對的(包括原本是對預(yù)測為對,原本是錯(cuò)的預(yù)測為錯(cuò)兩種情形)占整個(gè)的比例(越大越好,1為理想狀態(tài))
fp rate:原本是錯(cuò)的預(yù)測為對的比例(越小越好,0為理想狀態(tài))
tp rate:原本是對的預(yù)測為對的比例(越大越好,1為理想狀態(tài))
ROC曲線通常在Y軸上具有真陽性率,在X軸上具有假陽性率。這意味著圖的左上角是“理想”點(diǎn) - 誤報(bào)率為零,真正的正率為1。這不太現(xiàn)實(shí),但它確實(shí)意味著曲線下面積(AUC)通常更好。
二分類問題:ROC曲線
from __future__ import absolute_import from __future__ import division from __future__ import print_function import time start_time = time.time() import matplotlib.pyplot as plt from sklearn.metrics import roc_curve from sklearn.metrics import auc import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import recall_score,accuracy_score from sklearn.metrics import precision_score,f1_score from keras.optimizers import Adam,SGD,sgd from keras.models import load_model print('讀取數(shù)據(jù)') X_train = np.load('x_train-rotate_2.npy') Y_train = np.load('y_train-rotate_2.npy') print(X_train.shape) print(Y_train.shape) print('獲取測試數(shù)據(jù)和驗(yàn)證數(shù)據(jù)') X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.1, random_state=666) Y_train = np.asarray(Y_train,np.uint8) Y_valid = np.asarray(Y_valid,np.uint8) X_valid = np.array(X_valid, np.float32) / 255. print('獲取模型') model = load_model('./model/InceptionV3_model.h5') opt = Adam(lr=1e-4) model.compile(optimizer=opt, loss='binary_crossentropy') print("Predicting") Y_pred = model.predict(X_valid) Y_pred = [np.argmax(y) for y in Y_pred] # 取出y中元素最大值所對應(yīng)的索引 Y_valid = [np.argmax(y) for y in Y_valid] # micro:多分類 # weighted:不均衡數(shù)量的類來說,計(jì)算二分類metrics的平均 # macro:計(jì)算二分類metrics的均值,為每個(gè)類給出相同權(quán)重的分值。 precision = precision_score(Y_valid, Y_pred, average='weighted') recall = recall_score(Y_valid, Y_pred, average='weighted') f1_score = f1_score(Y_valid, Y_pred, average='weighted') accuracy_score = accuracy_score(Y_valid, Y_pred) print("Precision_score:",precision) print("Recall_score:",recall) print("F1_score:",f1_score) print("Accuracy_score:",accuracy_score) # 二分類?。遥希们€ # roc_curve:真正率(True Positive Rate , TPR)或靈敏度(sensitivity) # 橫坐標(biāo):假正率(False Positive Rate , FPR) fpr, tpr, thresholds_keras = roc_curve(Y_valid, Y_pred) auc = auc(fpr, tpr) print("AUC : ", auc) plt.figure() plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr, tpr, label='Keras (area = {:.3f})'.format(auc)) plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve') plt.legend(loc='best') plt.savefig("../images/ROC/ROC_2分類.png") plt.show() print("--- %s seconds ---" % (time.time() - start_time))
ROC圖如下所示:
多分類問題:ROC曲線
ROC曲線通常用于二分類以研究分類器的輸出。為了將ROC曲線和ROC區(qū)域擴(kuò)展到多類或多標(biāo)簽分類,有必要對輸出進(jìn)行二值化。⑴可以每個(gè)標(biāo)簽繪制一條ROC曲線。⑵也可以通過將標(biāo)簽指示符矩陣的每個(gè)元素視為二元預(yù)測(微平均)來繪制ROC曲線。⑶另一種用于多類別分類的評估方法是宏觀平均,它對每個(gè)標(biāo)簽的分類給予相同的權(quán)重。
from __future__ import absolute_import from __future__ import division from __future__ import print_function import time start_time = time.time() import matplotlib.pyplot as plt from sklearn.metrics import roc_curve from sklearn.metrics import auc import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import recall_score,accuracy_score from sklearn.metrics import precision_score,f1_score from keras.optimizers import Adam,SGD,sgd from keras.models import load_model from itertools import cycle from scipy import interp from sklearn.preprocessing import label_binarize nb_classes = 5 print('讀取數(shù)據(jù)') X_train = np.load('x_train-resized_5.npy') Y_train = np.load('y_train-resized_5.npy') print(X_train.shape) print(Y_train.shape) print('獲取測試數(shù)據(jù)和驗(yàn)證數(shù)據(jù)') X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.1, random_state=666) Y_train = np.asarray(Y_train,np.uint8) Y_valid = np.asarray(Y_valid,np.uint8) X_valid = np.asarray(X_valid, np.float32) / 255. print('獲取模型') model = load_model('./model/SE-InceptionV3_model.h5') opt = Adam(lr=1e-4) model.compile(optimizer=opt, loss='categorical_crossentropy') print("Predicting") Y_pred = model.predict(X_valid) Y_pred = [np.argmax(y) for y in Y_pred] # 取出y中元素最大值所對應(yīng)的索引 Y_valid = [np.argmax(y) for y in Y_valid] # Binarize the output Y_valid = label_binarize(Y_valid, classes=[i for i in range(nb_classes)]) Y_pred = label_binarize(Y_pred, classes=[i for i in range(nb_classes)]) # micro:多分類 # weighted:不均衡數(shù)量的類來說,計(jì)算二分類metrics的平均 # macro:計(jì)算二分類metrics的均值,為每個(gè)類給出相同權(quán)重的分值。 precision = precision_score(Y_valid, Y_pred, average='micro') recall = recall_score(Y_valid, Y_pred, average='micro') f1_score = f1_score(Y_valid, Y_pred, average='micro') accuracy_score = accuracy_score(Y_valid, Y_pred) print("Precision_score:",precision) print("Recall_score:",recall) print("F1_score:",f1_score) print("Accuracy_score:",accuracy_score) # roc_curve:真正率(True Positive Rate , TPR)或靈敏度(sensitivity) # 橫坐標(biāo):假正率(False Positive Rate , FPR) # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(nb_classes): fpr[i], tpr[i], _ = roc_curve(Y_valid[:, i], Y_pred[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(Y_valid.ravel(), Y_pred.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) # Compute macro-average ROC curve and ROC area # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(nb_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(nb_classes): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= nb_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) # Plot all ROC curves lw = 2 plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(nb_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.savefig("../images/ROC/ROC_5分類.png") plt.show() print("--- %s seconds ---" % (time.time() - start_time))
ROC圖如下所示:
以上這篇python實(shí)現(xiàn)二分類和多分類的ROC曲線教程就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
pandas數(shù)據(jù)聚合與分組運(yùn)算的實(shí)現(xiàn)
本文主要介紹了pandas數(shù)據(jù)聚合與分組運(yùn)算的實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2023-01-01python orm 框架中sqlalchemy用法實(shí)例詳解
這篇文章主要介紹了python orm 框架中sqlalchemy用法,結(jié)合實(shí)例形式詳細(xì)分析了Python orm 框架基本概念、原理及sqlalchemy相關(guān)使用技巧,需要的朋友可以參考下2020-02-02python如何修改PYTHONPATH環(huán)境變量
這篇文章主要介紹了python如何修改PYTHONPATH環(huán)境變量問題,具有很好的參考價(jià)值,希望對大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2023-08-08Python asyncore socket客戶端實(shí)現(xiàn)方法詳解
這篇文章主要介紹了Python asyncore socket客戶端實(shí)現(xiàn)方法,asyncore庫是python的一個(gè)標(biāo)準(zhǔn)庫,提供了以異步的方式寫入套接字服務(wù)的客戶端和服務(wù)器的基礎(chǔ)結(jié)構(gòu)2022-12-12