Tensorflow之MNIST CNN實現(xiàn)并保存、加載模型
更新時間:2020年06月17日 10:25:55 作者:uflswe
這篇文章主要為大家詳細介紹了Tensorflow之MNIST CNN實現(xiàn)并保存、加載模型,文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下
本文實例為大家分享了Tensorflow之MNIST CNN實現(xiàn)并保存、加載模型的具體代碼,供大家參考,具體內(nèi)容如下
廢話不說,直接上代碼
# TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt import os #download the data mnist = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() class_names = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] train_images = train_images / 255.0 test_images = test_images / 255.0 def create_model(): # It's necessary to give the input_shape,or it will fail when you load the model # The error will be like : You are trying to load the 4 layer models to the 0 layer model = keras.Sequential([ keras.layers.Conv2D(32,[5,5], activation=tf.nn.relu,input_shape = (28,28,1)), keras.layers.MaxPool2D(), keras.layers.Conv2D(64,[7,7], activation=tf.nn.relu), keras.layers.MaxPool2D(), keras.layers.Flatten(), keras.layers.Dense(576, activation=tf.nn.relu), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model #reshape the shape before using it, for that the input of cnn is 4 dimensions train_images = np.reshape(train_images,[-1,28,28,1]) test_images = np.reshape(test_images,[-1,28,28,1]) #train model = create_model() model.fit(train_images, train_labels, epochs=4) #save the model model.save('my_model.h5') #Evaluate test_loss, test_acc = model.evaluate(test_images, test_labels,verbose = 0) print('Test accuracy:', test_acc)
模型保存后,自己手寫了幾張圖片,放在文件夾C:\pythonp\testdir2下,開始測試
#Load the model new_model = keras.models.load_model('my_model.h5') new_model.compile(optimizer=tf.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) new_model.summary() #Evaluate # test_loss, test_acc = new_model.evaluate(test_images, test_labels) # print('Test accuracy:', test_acc) #Predicte mypath = 'C:\\pythonp\\testdir2' def getimg(mypath): listdir = os.listdir(mypath) imgs = [] for p in listdir: img = plt.imread(mypath+'\\'+p) # I save the picture that I draw myself under Windows, but the saved picture's # encode style is just opposite with the experiment data, so I transfer it with # this line. img = np.abs(img/255-1) imgs.append(img[:,:,0]) return np.array(imgs),len(imgs) imgs = getimg(mypath) test_images = np.reshape(imgs[0],[-1,28,28,1]) predictions = new_model.predict(test_images) plt.figure() for i in range(imgs[1]): c = np.argmax(predictions[i]) plt.subplot(3,3,i+1) plt.xticks([]) plt.yticks([]) plt.imshow(test_images[i,:,:,0]) plt.title(class_names[c]) plt.show()
測試結(jié)果
自己手寫的圖片截的時候要注意,空白部分盡量不要太大,否則測試結(jié)果就呵呵了
以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關文章
詳解python tkinter包獲取本地絕對路徑(以獲取圖片并展示)
這篇文章主要給大家介紹了關于python tkinter包獲取本地絕對路徑(以獲取圖片并展示)的相關資料,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2020-09-09Python中網(wǎng)絡請求中Retry策略實現(xiàn)方式
這篇文章主要介紹了Python中網(wǎng)絡請求中Retry策略實現(xiàn)方式,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2024-06-06Pandas中DataFrame對象轉(zhuǎn)置(交換行列)
本文主要介紹了Pandas中DataFrame對象轉(zhuǎn)置(交換行列),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2023-02-02python字符串拼接.join()和拆分.split()詳解
這篇文章主要為大家介紹了python字符串拼接.join()和拆分.split(),具有一定的參考價值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來幫助2021-11-11