欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

基于Keras的格式化輸出Loss實(shí)現(xiàn)方式

 更新時(shí)間:2020年06月17日 10:29:28   作者:鵲踏枝-碼農(nóng)  
這篇文章主要介紹了基于Keras的格式化輸出Loss實(shí)現(xiàn)方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧

在win7 64位,Anaconda安裝的Python3.6.1下安裝的TensorFlow與Keras,Keras的backend為TensorFlow。在運(yùn)行Mask R-CNN時(shí),在進(jìn)行調(diào)試時(shí)想知道PyCharm (Python IDE)底部窗口輸出的Loss格式是在哪里定義的,如下圖紅框中所示:

圖1 訓(xùn)練過(guò)程的Loss格式化輸出

在上圖紅框中,Loss的輸出格式是在哪里定義的呢?有一點(diǎn)是明確的,即上圖紅框中的內(nèi)容是在訓(xùn)練的時(shí)候輸出的。那么先來(lái)看一下Mask R-CNN的訓(xùn)練過(guò)程。Keras以Numpy數(shù)組作為輸入數(shù)據(jù)和標(biāo)簽的數(shù)據(jù)類型。訓(xùn)練模型一般使用 fit 函數(shù)。然而由于Mask R-CNN訓(xùn)練數(shù)據(jù)巨大,不能一次性全部載入,否則太消耗內(nèi)存。于是采用生成器的方式一次載入一個(gè)batch的數(shù)據(jù),而且是在用到這個(gè)batch的數(shù)據(jù)才開(kāi)始載入的,那么它的訓(xùn)練函數(shù)如下:

 self.keras_model.fit_generator(
   train_generator,
   initial_epoch=self.epoch,
   epochs=epochs,
   steps_per_epoch=self.config.STEPS_PER_EPOCH,
   callbacks=callbacks,
   validation_data=val_generator,
   validation_steps=self.config.VALIDATION_STEPS,
   max_queue_size=100,
   workers=workers,
   use_multiprocessing=False,
  )

這里訓(xùn)練模型的函數(shù)相應(yīng)的為 fit_generator 函數(shù)。注意其中的參數(shù)callbacks=callbacks,這個(gè)參數(shù)在輸出紅框中的內(nèi)容起到了關(guān)鍵性的作用。下面看一下callbacks的值:

# Callbacks
  callbacks = [
   keras.callbacks.TensorBoard(log_dir=self.log_dir,
          histogram_freq=0, write_graph=True, write_images=False),
   keras.callbacks.ModelCheckpoint(self.checkpoint_path,
           verbose=0, save_weights_only=True),
  ]

在輸出紅框中的內(nèi)容所需的數(shù)據(jù)均保存在self.log_dir下。然后調(diào)試進(jìn)入self.keras_model.fit_generator函數(shù),進(jìn)入keras,legacy.interfaces的legacy_support(func)函數(shù),如下所示:

 def legacy_support(func):
  @six.wraps(func)
  def wrapper(*args, **kwargs):
   if object_type == 'class':
    object_name = args[0].__class__.__name__
   else:
    object_name = func.__name__
   if preprocessor:
    args, kwargs, converted = preprocessor(args, kwargs)
   else:
    converted = []
   if check_positional_args:
    if len(args) > len(allowed_positional_args) + 1:
     raise TypeError('`' + object_name +
         '` can accept only ' +
         str(len(allowed_positional_args)) +
         ' positional arguments ' +
         str(tuple(allowed_positional_args)) +
         ', but you passed the following '
         'positional arguments: ' +
         str(list(args[1:])))
   for key in value_conversions:
    if key in kwargs:
     old_value = kwargs[key]
     if old_value in value_conversions[key]:
      kwargs[key] = value_conversions[key][old_value]
   for old_name, new_name in conversions:
    if old_name in kwargs:
     value = kwargs.pop(old_name)
     if new_name in kwargs:
      raise_duplicate_arg_error(old_name, new_name)
     kwargs[new_name] = value
     converted.append((new_name, old_name))
   if converted:
    signature = '`' + object_name + '('
    for i, value in enumerate(args[1:]):
     if isinstance(value, six.string_types):
      signature += '"' + value + '"'
     else:
      if isinstance(value, np.ndarray):
       str_val = 'array'
      else:
       str_val = str(value)
      if len(str_val) > 10:
       str_val = str_val[:10] + '...'
      signature += str_val
     if i < len(args[1:]) - 1 or kwargs:
      signature += ', '
    for i, (name, value) in enumerate(kwargs.items()):
     signature += name + '='
     if isinstance(value, six.string_types):
      signature += '"' + value + '"'
     else:
      if isinstance(value, np.ndarray):
       str_val = 'array'
      else:
       str_val = str(value)
      if len(str_val) > 10:
       str_val = str_val[:10] + '...'
      signature += str_val
     if i < len(kwargs) - 1:
      signature += ', '
    signature += ')`'
    warnings.warn('Update your `' + object_name +
        '` call to the Keras 2 API: ' + signature, stacklevel=2)
   return func(*args, **kwargs)
  wrapper._original_function = func
  return wrapper
 return legacy_support

在上述代碼的倒數(shù)第4行的return func(*args, **kwargs)處返回func,func為fit_generator函數(shù),現(xiàn)調(diào)試進(jìn)入fit_generator函數(shù),該函數(shù)定義在keras.engine.training模塊內(nèi)的fit_generator函數(shù),調(diào)試進(jìn)入函數(shù)callbacks.on_epoch_begin(epoch),如下所示:

# Construct epoch logs.
   epoch_logs = {}
   while epoch < epochs:
    for m in self.stateful_metric_functions:
     m.reset_states()
    callbacks.on_epoch_begin(epoch)

調(diào)試進(jìn)入到callbacks.on_epoch_begin(epoch)函數(shù),進(jìn)入on_epoch_begin函數(shù),如下所示:

def on_epoch_begin(self, epoch, logs=None):
  """Called at the start of an epoch.
  # Arguments
   epoch: integer, index of epoch.
   logs: dictionary of logs.
  """
  logs = logs or {}
  for callback in self.callbacks:
   callback.on_epoch_begin(epoch, logs)
  self._delta_t_batch = 0.
  self._delta_ts_batch_begin = deque([], maxlen=self.queue_length)
  self._delta_ts_batch_end = deque([], maxlen=self.queue_length)

在上述函數(shù)on_epoch_begin中調(diào)試進(jìn)入callback.on_epoch_begin(epoch, logs)函數(shù),轉(zhuǎn)到類ProgbarLogger(Callback)中定義的on_epoch_begin函數(shù),如下所示:

class ProgbarLogger(Callback):
 """Callback that prints metrics to stdout.
 # Arguments
  count_mode: One of "steps" or "samples".
   Whether the progress bar should
   count samples seen or steps (batches) seen.
  stateful_metrics: Iterable of string names of metrics that
   should *not* be averaged over an epoch.
   Metrics in this list will be logged as-is.
   All others will be averaged over time (e.g. loss, etc).
 # Raises
  ValueError: In case of invalid `count_mode`.
 """
 
 def __init__(self, count_mode='samples',
     stateful_metrics=None):
  super(ProgbarLogger, self).__init__()
  if count_mode == 'samples':
   self.use_steps = False
  elif count_mode == 'steps':
   self.use_steps = True
  else:
   raise ValueError('Unknown `count_mode`: ' + str(count_mode))
  if stateful_metrics:
   self.stateful_metrics = set(stateful_metrics)
  else:
   self.stateful_metrics = set()
 
 def on_train_begin(self, logs=None):
  self.verbose = self.params['verbose']
  self.epochs = self.params['epochs']
 
 def on_epoch_begin(self, epoch, logs=None):
  if self.verbose:
   print('Epoch %d/%d' % (epoch + 1, self.epochs))
   if self.use_steps:
    target = self.params['steps']
   else:
    target = self.params['samples']
   self.target = target
   self.progbar = Progbar(target=self.target,
         verbose=self.verbose,
         stateful_metrics=self.stateful_metrics)
  self.seen = 0

在上述代碼的

print('Epoch %d/%d' % (epoch + 1, self.epochs))

輸出

Epoch 1/40(如紅框中所示內(nèi)容的第一行)。

然后返回到keras.engine.training模塊內(nèi)的fit_generator函數(shù),執(zhí)行到self.train_on_batch函數(shù),如下所示:

outs = self.train_on_batch(x, y,
     sample_weight=sample_weight,
     class_weight=class_weight)
 
     if not isinstance(outs, list):
      outs = [outs]
     for l, o in zip(out_labels, outs):
      batch_logs[l] = o
 
     callbacks.on_batch_end(batch_index, batch_logs)
 
     batch_index += 1
     steps_done += 1

調(diào)試進(jìn)入上述代碼中的callbacks.on_batch_end(batch_index, batch_logs)函數(shù),進(jìn)入到on_batch_end函數(shù)后,該函數(shù)的定義如下所示:

 def on_batch_end(self, batch, logs=None):
  """Called at the end of a batch.
  # Arguments
   batch: integer, index of batch within the current epoch.
   logs: dictionary of logs.
  """
  logs = logs or {}
  if not hasattr(self, '_t_enter_batch'):
   self._t_enter_batch = time.time()
  self._delta_t_batch = time.time() - self._t_enter_batch
  t_before_callbacks = time.time()
  for callback in self.callbacks:
   callback.on_batch_end(batch, logs)
  self._delta_ts_batch_end.append(time.time() - t_before_callbacks)
  delta_t_median = np.median(self._delta_ts_batch_end)
  if (self._delta_t_batch > 0. and
   (delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1)):
   warnings.warn('Method on_batch_end() is slow compared '
       'to the batch update (%f). Check your callbacks.'
       % delta_t_median)

接著繼續(xù)調(diào)試進(jìn)入上述代碼中的callback.on_batch_end(batch, logs)函數(shù),進(jìn)入到在類中ProgbarLogger(Callback)定義的on_batch_end函數(shù),如下所示:

def on_batch_end(self, batch, logs=None):
  logs = logs or {}
  batch_size = logs.get('size', 0)
  if self.use_steps:
   self.seen += 1
  else:
   self.seen += batch_size
 
  for k in self.params['metrics']:
   if k in logs:
    self.log_values.append((k, logs[k]))
 
  # Skip progbar update for the last batch;
  # will be handled by on_epoch_end.
  if self.verbose and self.seen < self.target:
   self.progbar.update(self.seen, self.log_values)

然后執(zhí)行到上述代碼的最后一行self.progbar.update(self.seen, self.log_values),調(diào)試進(jìn)入update函數(shù),該函數(shù)定義在模塊keras.utils.generic_utils中的類Progbar(object)定義的函數(shù)。類的定義及方法如下所示:

class Progbar(object):
 """Displays a progress bar.
 # Arguments
  target: Total number of steps expected, None if unknown.
  width: Progress bar width on screen.
  verbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)
  stateful_metrics: Iterable of string names of metrics that
   should *not* be averaged over time. Metrics in this list
   will be displayed as-is. All others will be averaged
   by the progbar before display.
  interval: Minimum visual progress update interval (in seconds).
 """
 
 def __init__(self, target, width=30, verbose=1, interval=0.05,
     stateful_metrics=None):
  self.target = target
  self.width = width
  self.verbose = verbose
  self.interval = interval
  if stateful_metrics:
   self.stateful_metrics = set(stateful_metrics)
  else:
   self.stateful_metrics = set()
 
  self._dynamic_display = ((hasattr(sys.stdout, 'isatty') and
         sys.stdout.isatty()) or
         'ipykernel' in sys.modules)
  self._total_width = 0
  self._seen_so_far = 0
  self._values = collections.OrderedDict()
  self._start = time.time()
  self._last_update = 0
 
 def update(self, current, values=None):
  """Updates the progress bar.
  # Arguments
   current: Index of current step.
   values: List of tuples:
    `(name, value_for_last_step)`.
    If `name` is in `stateful_metrics`,
    `value_for_last_step` will be displayed as-is.
    Else, an average of the metric over time will be displayed.
  """
  values = values or []
  for k, v in values:
   if k not in self.stateful_metrics:
    if k not in self._values:
     self._values[k] = [v * (current - self._seen_so_far),
          current - self._seen_so_far]
    else:
     self._values[k][0] += v * (current - self._seen_so_far)
     self._values[k][1] += (current - self._seen_so_far)
   else:
    # Stateful metrics output a numeric value. This representation
    # means "take an average from a single value" but keeps the
    # numeric formatting.
    self._values[k] = [v, 1]
  self._seen_so_far = current
 
  now = time.time()
  info = ' - %.0fs' % (now - self._start)
  if self.verbose == 1:
   if (now - self._last_update < self.interval and
     self.target is not None and current < self.target):
    return
 
   prev_total_width = self._total_width
   if self._dynamic_display:
    sys.stdout.write('\b' * prev_total_width)
    sys.stdout.write('\r')
   else:
    sys.stdout.write('\n')
 
   if self.target is not None:
    numdigits = int(np.floor(np.log10(self.target))) + 1
    barstr = '%%%dd/%d [' % (numdigits, self.target)
    bar = barstr % current
    prog = float(current) / self.target
    prog_width = int(self.width * prog)
    if prog_width > 0:
     bar += ('=' * (prog_width - 1))
     if current < self.target:
      bar += '>'
     else:
      bar += '='
    bar += ('.' * (self.width - prog_width))
    bar += ']'
   else:
    bar = '%7d/Unknown' % current
 
   self._total_width = len(bar)
   sys.stdout.write(bar)
 
   if current:
    time_per_unit = (now - self._start) / current
   else:
    time_per_unit = 0
   if self.target is not None and current < self.target:
    eta = time_per_unit * (self.target - current)
    if eta > 3600:
     eta_format = '%d:%02d:%02d' % (eta // 3600, (eta % 3600) // 60, eta % 60)
    elif eta > 60:
     eta_format = '%d:%02d' % (eta // 60, eta % 60)
    else:
     eta_format = '%ds' % eta
 
    info = ' - ETA: %s' % eta_format
   else:
    if time_per_unit >= 1:
     info += ' %.0fs/step' % time_per_unit
    elif time_per_unit >= 1e-3:
     info += ' %.0fms/step' % (time_per_unit * 1e3)
    else:
     info += ' %.0fus/step' % (time_per_unit * 1e6)
 
   for k in self._values:
    info += ' - %s:' % k
    if isinstance(self._values[k], list):
     avg = np.mean(
      self._values[k][0] / max(1, self._values[k][1]))
     if abs(avg) > 1e-3:
      info += ' %.4f' % avg
     else:
      info += ' %.4e' % avg
    else:
     info += ' %s' % self._values[k]
 
   self._total_width += len(info)
   if prev_total_width > self._total_width:
    info += (' ' * (prev_total_width - self._total_width))
 
   if self.target is not None and current >= self.target:
    info += '\n'
 
   sys.stdout.write(info)
   sys.stdout.flush()
 
  elif self.verbose == 2:
   if self.target is None or current >= self.target:
    for k in self._values:
     info += ' - %s:' % k
     avg = np.mean(
      self._values[k][0] / max(1, self._values[k][1]))
     if avg > 1e-3:
      info += ' %.4f' % avg
     else:
      info += ' %.4e' % avg
    info += '\n'
 
    sys.stdout.write(info)
    sys.stdout.flush()
 
  self._last_update = now
 
 def add(self, n, values=None):
  self.update(self._seen_so_far + n, values)

重點(diǎn)是上述代碼中的update(self, current, values=None)函數(shù),在該函數(shù)內(nèi)設(shè)置斷點(diǎn),即可調(diào)入該函數(shù)。下面重點(diǎn)分析上述代碼中的幾個(gè)輸出條目:

1. sys.stdout.write('\n') #換行

2. sys.stdout.write('bar') #輸出 [..................],其中bar= [..................];

3. sys.stdout.write(info) #輸出loss格式,其中info='- ETA:...';

4. sys.stdout.flush() #刷新緩存,立即得到輸出。

通過(guò)對(duì)Mask R-CNN代碼的調(diào)試分析可知,圖1中的紅框中的訓(xùn)練過(guò)程中的Loss格式化輸出是由built-in模塊實(shí)現(xiàn)的。若想得到類似的格式化輸出,關(guān)鍵在self.keras_model.fit_generator函數(shù)中傳入callbacks參數(shù)和callbacks中內(nèi)容的定義。

以上這篇基于Keras的格式化輸出Loss實(shí)現(xiàn)方式就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

相關(guān)文章

  • python Xpath語(yǔ)法的使用

    python Xpath語(yǔ)法的使用

    這篇文章主要介紹了python Xpath語(yǔ)法的使用,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2020-11-11
  • web自動(dòng)化測(cè)試Selenium點(diǎn)擊元素的常用方法

    web自動(dòng)化測(cè)試Selenium點(diǎn)擊元素的常用方法

    在Web自動(dòng)化測(cè)試中,Selenium提供多種點(diǎn)擊方法,常用的click()方法通過(guò)選中元素并觸發(fā)點(diǎn)擊事件,若click()方法不穩(wěn)定,可以采用JavaScript執(zhí)行點(diǎn)擊或使用ActionChains類模擬鼠標(biāo)點(diǎn)擊,需要的朋友可以參考下
    2024-09-09
  • python使用matplotlib繪圖時(shí)圖例顯示問(wèn)題的解決

    python使用matplotlib繪圖時(shí)圖例顯示問(wèn)題的解決

    matplotlib 是python最著名的繪圖庫(kù),它提供了一整套和matlab相似的命令A(yù)PI,十分適合交互式地進(jìn)行制圖。下面這篇文章主要給大家介紹了在python使用matplotlib繪圖時(shí)圖例顯示問(wèn)題的解決方法,需要的朋友可以參考學(xué)習(xí),下面來(lái)一起看看吧。
    2017-04-04
  • 使用Python來(lái)開(kāi)發(fā)Markdown腳本擴(kuò)展的實(shí)例分享

    使用Python來(lái)開(kāi)發(fā)Markdown腳本擴(kuò)展的實(shí)例分享

    這篇文章主要介紹了使用Python來(lái)開(kāi)發(fā)Markdown腳本擴(kuò)展的實(shí)例分享,文中的示例是用來(lái)簡(jiǎn)單地轉(zhuǎn)換文檔結(jié)構(gòu),主要為了體現(xiàn)一個(gè)思路,需要的朋友可以參考下
    2016-03-03
  • 在IPython中執(zhí)行Python程序文件的示例

    在IPython中執(zhí)行Python程序文件的示例

    今天小編就為大家分享一篇在IPython中執(zhí)行Python程序文件的示例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2018-11-11
  • Python將一個(gè)Excel拆分為多個(gè)Excel

    Python將一個(gè)Excel拆分為多個(gè)Excel

    這篇文章主要為大家詳細(xì)介紹了Python將一個(gè)Excel拆分為多個(gè)Excel,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2018-11-11
  • python多線程爬取西刺代理的示例代碼

    python多線程爬取西刺代理的示例代碼

    這篇文章主要介紹了python多線程爬取西刺代理的示例代碼,幫助大家更好的理解和學(xué)習(xí)python的爬蟲,感興趣的朋友可以了解下
    2021-01-01
  • OpenCV實(shí)現(xiàn)手勢(shì)虛擬拖拽的使用示例(附demo)

    OpenCV實(shí)現(xiàn)手勢(shì)虛擬拖拽的使用示例(附demo)

    本文主要介紹了OpenCV實(shí)現(xiàn)手勢(shì)虛擬拖拽的使用示例,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2023-11-11
  • TensorFlow2.1.0安裝過(guò)程中setuptools、wrapt等相關(guān)錯(cuò)誤指南

    TensorFlow2.1.0安裝過(guò)程中setuptools、wrapt等相關(guān)錯(cuò)誤指南

    這篇文章主要介紹了TensorFlow2.1.0安裝時(shí)setuptools、wrapt等相關(guān)錯(cuò)誤指南,本文通過(guò)安裝錯(cuò)誤分析給出大家解決方案,感興趣的朋友跟隨小編一起看看吧
    2020-04-04
  • python實(shí)現(xiàn)字典嵌套列表取值

    python實(shí)現(xiàn)字典嵌套列表取值

    今天小編就為大家分享一篇python實(shí)現(xiàn)字典嵌套列表取值,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2019-12-12

最新評(píng)論