淺談Python 函數(shù)式編程
匿名函數(shù)lambda表達(dá)式
什么是匿名函數(shù)?
匿名函數(shù),顧名思義就是沒有名字的函數(shù),在程序中不用使用 def 進行定義,可以直接使用 lambda 關(guān)鍵字編寫簡單的代碼邏輯。lambda 本質(zhì)上是一個函數(shù)對象,可以將其賦值給另一個變量,再由該變量來調(diào)用函數(shù),也可以直接使用。
#平時,我們是先定義函數(shù),再進行調(diào)用 def power(x): return x ** 2 print(power(2)) #使用lambda表達(dá)式的時候,我們可以這樣操作 power = lambda x : x ** 2 print(power(2)) #覺得太麻煩,還可以這樣調(diào)用 print((lambda x: 2 * x)(8))
lambda表達(dá)式的基本格式:lambda 入?yún)?: 表達(dá)式
#入?yún)⒖梢杂卸鄠€,比如 power = lambda x, n: x ** n print(power(2, 3))
lambda 表達(dá)式的使用場景
一般適用于創(chuàng)建一些臨時性的,小巧的函數(shù)。比如上面的 power函數(shù),我們當(dāng)然可以使用 def 來定義,但使用 lambda 來創(chuàng)建會顯得很簡潔,尤其是在高階函數(shù)的使用中。
定義一個函數(shù),傳入一個list,將list每個元素的值加1
def add(l = []): return [x +1 for x in l] print(add([1,2,3]))
上面的函數(shù)改成將所有元素的值加2
可能大家會說,這還不簡單,直接把return里的1改成2就行了。但是真的行嗎?如果函數(shù)被多個地方使用,而其他地方并不想加2,怎么辦?
這好辦,把變得那部分抽出來,讓調(diào)用者自己傳
def add(func,l = []): return [func(x) for x in l] def add1(x): return x+1 def add2(x): return x+2 print(add(add1,[1,2,3])) print(add(add2,[1,2,3]))
一個簡簡單單的問題,一定要用這么多代碼實現(xiàn)?
def add(func,l = []): return [func(x) for x in l] print(add(lambda x:x+1,[1,2,3])) print(add(lambda x:x+2,[1,2,3]))
map函數(shù)
map的基本格式
map(func, *iterables)
map() 函數(shù)接收兩個以上的參數(shù),開頭一個是函數(shù),剩下的是序列,將傳入的函數(shù)依次作用到序列的每個元素,并把結(jié)果作為新的序列返回。也就是類似 map(func,[1,2,3])
同樣的,我們還是來完成這樣一個功能:將list每個元素的值加1
def add(x): return x + 1 result = map(add, [1, 2, 3, 4]) print(type(result)) print(list(result))
使用lambda表達(dá)式簡化操作
result = map(lambda x: x + 1, [1, 2, 3, 4]) print(type(result)) print(list(result))
函數(shù)中帶兩個參數(shù)的map函數(shù)格式
使用map函數(shù),將兩個序列的數(shù)據(jù)對應(yīng)位置求和,之后返回,也就是對[1,2,3],[4,5,6]兩個序列進行操作之后,返回結(jié)果[5,7,9]
print(list(map(lambda x, y: x + y, [1, 2, 3], [4, 5, 6])))
對于兩個序列元素個數(shù)一樣的,相對好理解。如果兩個序列個數(shù)不一樣的,會不會報錯?
print(list(map(lambda x, y: x + y, [1, 2, 3], [4, 5])))
我們可以看到不會報錯,但是結(jié)果以個數(shù)少的為準(zhǔn)
reduce函數(shù)
reduce函數(shù)的基本格式
reduce(function, sequence, initial=None)
reduce把一個函數(shù)作用在一個序列上,這個函數(shù)必須接收兩個參數(shù),reduce函數(shù)把結(jié)果繼續(xù)和序列的下一個元素做累積計算,跟遞歸有點類似,reduce函數(shù)會被上一個計算結(jié)果應(yīng)用到本次計算中
reduce(func, [1,2,3]) = func(func(1, 2), 3)
使用reduce函數(shù),計算一個列表的乘積
from functools import reduce def func(x, y): return x * y print(reduce(func, [1, 2, 3, 4]))
結(jié)合lambda表達(dá)式,簡化操作
from functools import reduce print(reduce(lambda x, y: x * y, [1, 2, 3, 4]))
filter 函數(shù)
filter 顧名思義是過濾的意思,帶有雜質(zhì)的(非需要的數(shù)據(jù)),經(jīng)過 filter 處理之后,就被過濾掉。
filter函數(shù)的基本格式
filter(function_or_None, iterable)
filter() 接收一個函數(shù)和一個序列。把傳入的函數(shù)依次作用于每個元素,然后根據(jù)返回值是 True 還是 False 決定保留還是丟棄該元素。
使用 filter 函數(shù)對給定序列進行操作,最后返回序列中所有偶數(shù)
print(list(filter(lambda x: x % 2 == 0, [1, 2, 3, 4, 5])))
sorted 函數(shù)
sorted從字面上就可以看去這是個用來排序的函數(shù),sorted 可以對所有可迭代的對象進行排序操作
sorted的基本格式
sorted(iterable, key=None, reverse=False) #iterable -- 可迭代對象。 #key -- 主要是用來進行比較的元素,只有一個參數(shù),具體的函數(shù)的參數(shù)就是取自于可迭代對象中,指定可迭代對象中的一個元素來進行排序。 #reverse -- 排序規(guī)則,reverse = True 降序 , reverse = False 升序(默認(rèn))。 #對序列做升序排序 print(sorted([1, 6, 4, 5, 9])) #對序列做降序排序 print(sorted([1, 6, 4, 5, 9], reverse=True)) #對存儲多個列表的列表做排序 data = [["Python", 99], ["c", 88]] print(sorted(data, key=lambda item: item[1]))
閉包
在萬物皆對象的Python中,函數(shù)是否能作為函數(shù)的返回值進行返回呢?
def my_power(): n = 2 def power(x): return x ** n return power p = my_power() print(p(4)) #------------------------------------------------------------ def my_power(): n = 2 def power(x): return x ** n return power n = 3 p = my_power() print(p(4))
我們可以看到,my_power 函數(shù)在返回的時候,也將其引用的值(n)一同帶回,n 的值被新的函數(shù)所使用,這種情況我們稱之為閉包
當(dāng)我們把n的值移除到my_power函數(shù)外面,這個時候來看下計算結(jié)果
n = 2 def my_power(): def power(x): return x ** n return power n = 3 p = my_power() print(p(4))
為什么輸出的結(jié)果會是64?
我們先來看看閉包時,p.__closure____的結(jié)果
#例1 def my_power(): n = 2 def power(x): return x ** n return power p = my_power() print(p.__closure__) #結(jié)果:(<cell at 0x00000264518F9A38: int object at 0x00007FFA7F617120>) #closure是內(nèi)部函數(shù)的一個屬性,用來保存環(huán)境變量 #--------------------------------------------------------------------- #例2 n = 2 def my_power(): def power(x): return x ** n return power n = 3 p = my_power() print(p.__closure__) #輸出結(jié)果 None
通過例1跟例2對比,我們可以知道,例2并不是閉包
閉包經(jīng)典問題
下面的程序是否是閉包?能否正確運行
def my_power(): n = 2 def power(x): n += 1 return x ** n return power p = my_power() print(p(3))
如何讓上面的程序正確運行?看看改正之后的結(jié)果
def my_power(): n = 2 def power(x): nonlocal n n += 1 return x ** n return power p = my_power() print(p.__closure__) print(p(3)) print(p(3))
看看下面的程序的運行結(jié)果
def my_power(): n = 2 L = [] for i in range(1, 3): def power(): return i ** n L.append(power) return L f1, f2 = my_power() print(f1()) print(f2()) print(f1.__closure__[0].cell_contents) print(f2.__closure__[0].cell_contents)
python的函數(shù)只有在執(zhí)行時,才會去找函數(shù)體里的變量的值,也就是說你連形參都不確定,你咋求知道 i為幾呢?在這里,你只需要記住如果你連形參都不確定,python就只會記住最后一個i值。
裝飾器及其應(yīng)用
什么是裝飾器模式
裝飾器模式(Decorator Pattern)允許向一個現(xiàn)有的對象添加新的功能,同時又不改變其結(jié)構(gòu)。這種類型的設(shè)計模式屬于結(jié)構(gòu)型模式,它是作為現(xiàn)有的類的一個包裝。
這種模式創(chuàng)建了一個裝飾類,用來包裝原有的類,并在保持類方法簽名完整性的前提下,提供了額外的功能。
import time start = time.time() time.sleep(4) end = time.time() print(end - start)
從實際例子來看裝飾器
def my_fun(): print("這是一個函數(shù)") my_fun()
要再打印“這是一個函數(shù)”前面在打印多一行hello world。
def my_fun(): begin = time.time() time.sleep(2) print("這里一個函數(shù)") end = time.time() print(end-begin) my_fun()
這個時候,如果不想修改原有的函數(shù),咋整?
def my_fun(): print("這是一個函數(shù)") def my_time(func): begin = time.time() time.sleep(2) func() end = time.time() print(end - begin) my_time(func)
這種方式,因為要增加功能,導(dǎo)致所有的業(yè)務(wù)調(diào)用方都得進行修改,此法明顯不可取。
另一種方式:
def print_cost(func): def wrapper(): begin = time.time() time.sleep(2) func() end = time.time() print(end - begin) return wrapper @print_cost def my_fun(): print("這里一個函數(shù)")
第二種方式并沒有修改func函數(shù)的內(nèi)部實現(xiàn),而是使用裝飾器模式對其功能進行裝飾增強。
以上就是淺談Python 函數(shù)式編程的詳細(xì)內(nèi)容,更多關(guān)于Python 函數(shù)式編程的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
使用Python和大模型進行數(shù)據(jù)分析和文本生成
Python語言以其簡潔和強大的特性,成為了數(shù)據(jù)科學(xué)、機器學(xué)習(xí)和人工智能開發(fā)的首選語言之一,在這篇文章中,我將介紹如何用Python連接和使用大模型,并通過示例展示如何在實際項目中應(yīng)用這些技術(shù),需要的朋友可以參考下2024-05-05Python實現(xiàn)自動上傳文件到百度網(wǎng)盤
這篇文章主要為大家詳細(xì)介紹了如何利用Python實現(xiàn)自動上傳文件到百度網(wǎng)盤功能,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以跟隨小編一起了解一下2023-04-04淺談keras保存模型中的save()和save_weights()區(qū)別
這篇文章主要介紹了淺談keras保存模型中的save()和save_weights()區(qū)別,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-05-05Python 的第三方調(diào)試庫 ???pysnooper?? 使用示例
這篇文章主要介紹了Python 的第三方調(diào)試庫 ???pysnooper?? 使用示例的相關(guān)資料,需要的朋友可以參考下2023-02-02