TensorFlow中如何確定張量的形狀實(shí)例
我們可以使用tf.shape()獲取某張量的形狀張量。
import tensorflow as tf x = tf.reshape(tf.range(1000), [10, 10, 10]) sess = tf.Session() sess.run(tf.shape(x)) Out[1]: array([10, 10, 10])
我們可以使用tf.shape()在計(jì)算圖中確定改變張量的形狀。
high = tf.shape(x)[0] // 2 width = tf.shape(x)[1] * 2 x_reshape = tf.reshape(x, [high, width, -1]) sess.run(tf.shape(x_reshape)) Out: array([ 5, 20, 10])
我們可以使用tf.shape_n()在計(jì)算圖中得到若干個(gè)張量的形狀。
y = tf.reshape(tf.range(504), [7,8,9]) sess.run(tf.shape_n([x, y])) Out: [array([10, 10, 10]), array([7, 8, 9])]
我們可以使用tf.size()獲取張量的元素個(gè)數(shù)。
sess.run([tf.size(x), tf.size(y)])
Out: [1000, 504]
tensor.get_shape()或者tensor.shape是無法在計(jì)算圖中用于確定張量的形狀。
In [20]: x.get_shape()
Out[20]: TensorShape([Dimension(10), Dimension(10), Dimension(10)])
In [21]: x.get_shape()[0]
Out[21]: Dimension(10)
In [22]: type(x.get_shape()[0])
Out[22]: tensorflow.python.framework.tensor_shape.Dimension
In [23]: x.get_shape()
Out[23]: TensorShape([Dimension(10), Dimension(10), Dimension(10)])
In [24]: sess.run(x.get_shape())
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn)
299 self._unique_fetches.append(ops.get_default_graph().as_graph_element(
--> 300 fetch, allow_tensor=True, allow_operation=True))
301 except TypeError as e:
~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in as_graph_element(self, obj, allow_tensor, allow_operation)
3477 with self._lock:
-> 3478 return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
3479
~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in _as_graph_element_locked(self, obj, allow_tensor, allow_operation)
3566 raise TypeError("Can not convert a %s into a %s." % (type(obj).__name__,
-> 3567 types_str))
3568
TypeError: Can not convert a TensorShapeV1 into a Tensor or Operation.
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-24-de007c69e003> in <module>
----> 1 sess.run(x.get_shape())
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
927 try:
928 result = self._run(None, fetches, feed_dict, options_ptr,
--> 929 run_metadata_ptr)
930 if run_metadata:
931 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1135 # Create a fetch handler to take care of the structure of fetches.
1136 fetch_handler = _FetchHandler(
-> 1137 self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)
1138
1139 # Run request and get response.
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, graph, fetches, feeds, feed_handles)
469 """
470 with graph.as_default():
--> 471 self._fetch_mapper = _FetchMapper.for_fetch(fetches)
472 self._fetches = []
473 self._targets = []
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in for_fetch(fetch)
269 if isinstance(fetch, tensor_type):
270 fetches, contraction_fn = fetch_fn(fetch)
--> 271 return _ElementFetchMapper(fetches, contraction_fn)
272 # Did not find anything.
273 raise TypeError('Fetch argument %r has invalid type %r' % (fetch,
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn)
302 raise TypeError('Fetch argument %r has invalid type %r, '
303 'must be a string or Tensor. (%s)' %
--> 304 (fetch, type(fetch), str(e)))
305 except ValueError as e:
306 raise ValueError('Fetch argument %r cannot be interpreted as a '
TypeError: Fetch argument TensorShape([Dimension(10), Dimension(10), Dimension(10)]) has invalid type <class 'tensorflow.python.framework.tensor_shape.TensorShapeV1'>, must be a string or Tensor. (Can not convert a TensorShapeV1 into a Tensor or Operation.)
我們可以使用tf.rank()來確定張量的秩。tf.rank()會(huì)返回一個(gè)代表張量秩的張量,可直接在計(jì)算圖中使用。
In [25]: tf.rank(x) Out[25]: <tf.Tensor 'Rank:0' shape=() dtype=int32> In [26]: sess.run(tf.rank(x)) Out[26]: 3
補(bǔ)充知識(shí):tensorflow循環(huán)改變tensor的值
使用tf.concat()實(shí)現(xiàn)4維tensor的循環(huán)賦值
alist=[[[[1,1,1],[2,2,2],[3,3,3]],[[4,4,4],[5,5,5],[6,6,6]]],[[[7,7,7],[8,8,8],[9,9,9]],[[10,10,10],[11,11,11],[12,12,12]]]] #2,2,3,3-n,c,h,w kenel=(np.asarray(alist)*2).tolist() print(kenel) inputs=tf.constant(alist,dtype=tf.float32) kenel=tf.constant(kenel,dtype=tf.float32) inputs=tf.transpose(inputs,[0,2,3,1]) #n,h,w,c kenel=tf.transpose(kenel,[0,2,3,1]) #n,h,w,c uints=inputs.get_shape() h=int(uints[1]) w=int(uints[2]) encoder_output=[] for b in range(int(uints[0])): encoder_output_c=[] for c in range(int(uints[-1])): one_channel_in = inputs[b, :, :, c] one_channel_in = tf.reshape(one_channel_in, [1, h, w, 1]) one_channel_kernel = kenel[b, :, :, c] one_channel_kernel = tf.reshape(one_channel_kernel, [h, w, 1, 1]) encoder_output_cc = tf.nn.conv2d(input=one_channel_in, filter=one_channel_kernel, strides=[1, 1, 1, 1], padding="SAME") if c==0: encoder_output_c=encoder_output_cc else: encoder_output_c=tf.concat([encoder_output_c,encoder_output_cc],axis=3) if b==0: encoder_output=encoder_output_c else: encoder_output = tf.concat([encoder_output, encoder_output_c], axis=0) with tf.Session() as sess: print(sess.run(tf.transpose(encoder_output,[0,3,1,2]))) print(encoder_output.get_shape())
輸出:
[[[[ 32. 48. 32.] [ 56. 84. 56.] [ 32. 48. 32.]] [[ 200. 300. 200.] [ 308. 462. 308.] [ 200. 300. 200.]]] [[[ 512. 768. 512.] [ 776. 1164. 776.] [ 512. 768. 512.]] [[ 968. 1452. 968.] [1460. 2190. 1460.] [ 968. 1452. 968.]]]] (2, 3, 3, 2)
以上這篇TensorFlow中如何確定張量的形狀實(shí)例就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python使用pandas模塊實(shí)現(xiàn)表之間的關(guān)聯(lián)
在數(shù)據(jù)分析和處理中,表之間的關(guān)聯(lián)是非常常見的操作,本文為大家介紹了pandas中實(shí)現(xiàn)表之間的關(guān)聯(lián)有四種方式,感興趣的小伙伴可以了解一下2023-07-07
python隨機(jī)生成大小寫字母數(shù)字混合密碼(僅20行代碼)
這篇文章主要介紹了python隨機(jī)生成大小寫字母數(shù)字混合密碼,主要是利用random模塊隨機(jī)生成數(shù)字,大小寫字母,通過循環(huán)次數(shù)來實(shí)現(xiàn)此功能,需要的朋友可以參考下2020-02-02
python使用Pybind11擴(kuò)展c++的實(shí)現(xiàn)
Pybind11是一個(gè)輕量級的C++庫,旨在無縫地將C++代碼綁定到Python,本文主要介紹了python使用Pybind11擴(kuò)展c++的實(shí)現(xiàn),具有一定的參考價(jià)值,感興趣的可以了解一下2025-04-04
淺析Python中g(shù)lobal和nonlocal關(guān)鍵字的妙用
這篇文章主要來和大家一起深入探討Python中關(guān)鍵詞global和nonlocal的用法,包括詳細(xì)的示例代碼和實(shí)際應(yīng)用場景,感興趣的可以了解下2024-04-04

