欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

pytorch VGG11識別cifar10數(shù)據(jù)集(訓(xùn)練+預(yù)測單張輸入圖片操作)

 更新時間:2020年06月24日 15:11:41   作者:ZJE_ANDY  
這篇文章主要介紹了pytorch VGG11識別cifar10數(shù)據(jù)集(訓(xùn)練+預(yù)測單張輸入圖片操作),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧

首先這是VGG的結(jié)構(gòu)圖,VGG11則是紅色框里的結(jié)構(gòu),共分五個block,如紅框中的VGG11第一個block就是一個conv3-64卷積層:

一,寫VGG代碼時,首先定義一個 vgg_block(n,in,out)方法,用來構(gòu)建VGG中每個block中的卷積核和池化層:

n是這個block中卷積層的數(shù)目,in是輸入的通道數(shù),out是輸出的通道數(shù)

有了block以后,我們還需要一個方法把形成的block疊在一起,我們定義這個方法叫vgg_stack:

def vgg_stack(num_convs, channels): # vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))


 net = []
 for n, c in zip(num_convs, channels):
  in_c = c[0]
  out_c = c[1]
  net.append(vgg_block(n, in_c, out_c))
 return nn.Sequential(*net)

右邊的注釋

vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))

里,(1, 1, 2, 2, 2)表示五個block里,各自的卷積層數(shù)目,((3, 64), (64, 128), (128, 256), (256, 512), (512, 512))表示每個block中的卷積層的類型,如(3,64)表示這個卷積層輸入通道數(shù)是3,輸出通道數(shù)是64。vgg_stack方法返回的就是完整的vgg11模型了。

接著定義一個vgg類,包含vgg_stack方法:

#vgg類
class vgg(nn.Module):
 def __init__(self):
  super(vgg, self).__init__()
  self.feature = vgg_net
  self.fc = nn.Sequential(
   nn.Linear(512, 100),
   nn.ReLU(True),
   nn.Linear(100, 10)
  )
 
 def forward(self, x):
  x = self.feature(x)
  x = x.view(x.shape[0], -1)
  x = self.fc(x)
  return x

最后:

net = vgg() #就能獲取到vgg網(wǎng)絡(luò)

那么構(gòu)建vgg網(wǎng)絡(luò)完整的pytorch代碼是:

def vgg_block(num_convs, in_channels, out_channels):
 net = [nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(True)]
 
 for i in range(num_convs - 1): # 定義后面的許多層
  net.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))
  net.append(nn.ReLU(True))
 
 net.append(nn.MaxPool2d(2, 2)) # 定義池化層
 return nn.Sequential(*net)
 
# 下面我們定義一個函數(shù)對這個 vgg block 進(jìn)行堆疊
def vgg_stack(num_convs, channels): # vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
 net = []
 for n, c in zip(num_convs, channels):
  in_c = c[0]
  out_c = c[1]
  net.append(vgg_block(n, in_c, out_c))
 return nn.Sequential(*net)
 
#確定vgg的類型,是vgg11 還是vgg16還是vgg19
vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
#vgg類
class vgg(nn.Module):
 def __init__(self):
  super(vgg, self).__init__()
  self.feature = vgg_net
  self.fc = nn.Sequential(
   nn.Linear(512, 100),
   nn.ReLU(True),
   nn.Linear(100, 10)
  )
 def forward(self, x):
  x = self.feature(x)
  x = x.view(x.shape[0], -1)
  x = self.fc(x)
  return x
 
#獲取vgg網(wǎng)絡(luò)
net = vgg() 

基于VGG11的cifar10訓(xùn)練代碼:

import sys
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
from torchvision.datasets import CIFAR10
import torchvision.transforms as transforms
 
def vgg_block(num_convs, in_channels, out_channels):
 net = [nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(True)]
 
 for i in range(num_convs - 1): # 定義后面的許多層
  net.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))
  net.append(nn.ReLU(True))
 
 net.append(nn.MaxPool2d(2, 2)) # 定義池化層
 return nn.Sequential(*net)
 
# 下面我們定義一個函數(shù)對這個 vgg block 進(jìn)行堆疊
def vgg_stack(num_convs, channels): # vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
 net = []
 for n, c in zip(num_convs, channels):
  in_c = c[0]
  out_c = c[1]
  net.append(vgg_block(n, in_c, out_c))
 return nn.Sequential(*net)
 
#vgg類
class vgg(nn.Module):
 def __init__(self):
  super(vgg, self).__init__()
  self.feature = vgg_net
  self.fc = nn.Sequential(
   nn.Linear(512, 100),
   nn.ReLU(True),
   nn.Linear(100, 10)
  )
 def forward(self, x):
  x = self.feature(x)
  x = x.view(x.shape[0], -1)
  x = self.fc(x)
  return x
 
# 然后我們可以訓(xùn)練我們的模型看看在 cifar10 上的效果
def data_tf(x):
 x = np.array(x, dtype='float32') / 255
 x = (x - 0.5) / 0.5
 x = x.transpose((2, 0, 1)) ## 將 channel 放到第一維,只是 pytorch 要求的輸入方式
 x = torch.from_numpy(x)
 return x
 
transform = transforms.Compose([transforms.ToTensor(),
         transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
         ])
def get_acc(output, label):
 total = output.shape[0]
 _, pred_label = output.max(1)
 num_correct = (pred_label == label).sum().item()
 return num_correct / total
 
def train(net, train_data, valid_data, num_epochs, optimizer, criterion):
 if torch.cuda.is_available():
  net = net.cuda()
 for epoch in range(num_epochs):
  train_loss = 0
  train_acc = 0
  net = net.train()
  for im, label in train_data:
   if torch.cuda.is_available():
    im = Variable(im.cuda())
    label = Variable(label.cuda())
   else:
    im = Variable(im)
    label = Variable(label)
   # forward
   output = net(im)
   loss = criterion(output, label)
   # forward
   optimizer.zero_grad()
   loss.backward()
   optimizer.step()
 
   train_loss += loss.item()
   train_acc += get_acc(output, label)
 
  if valid_data is not None:
   valid_loss = 0
   valid_acc = 0
   net = net.eval()
   for im, label in valid_data:
    if torch.cuda.is_available():
     with torch.no_grad():
      im = Variable(im.cuda())
      label = Variable(label.cuda())
    else:
     with torch.no_grad():
      im = Variable(im)
      label = Variable(label)
    output = net(im)
    loss = criterion(output, label)
    valid_loss += loss.item()
    valid_acc += get_acc(output, label)
   epoch_str = (
     "Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, "
     % (epoch, train_loss / len(train_data),
      train_acc / len(train_data), valid_loss / len(valid_data),
      valid_acc / len(valid_data)))
  else:
   epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, " %
       (epoch, train_loss / len(train_data),
       train_acc / len(train_data)))
 
  # prev_time = cur_time
  print(epoch_str)
 
if __name__ == '__main__':
 # 作為實例,我們定義一個稍微簡單一點(diǎn)的 vgg11 結(jié)構(gòu),其中有 8 個卷積層
 vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
 print(vgg_net)
 
 train_set = CIFAR10('./data', train=True, transform=transform, download=True)
 train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
 test_set = CIFAR10('./data', train=False, transform=transform, download=True)
 test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)
 
 net = vgg()
 optimizer = torch.optim.SGD(net.parameters(), lr=1e-1)
 criterion = nn.CrossEntropyLoss() #損失函數(shù)為交叉熵
 
 train(net, train_data, test_data, 50, optimizer, criterion)
 torch.save(net, 'vgg_model.pth')

結(jié)束后,會出現(xiàn)一個模型文件vgg_model.pth

二,然后網(wǎng)上找張圖片,把圖片縮成32x32,放到預(yù)測代碼中,即可有預(yù)測結(jié)果出現(xiàn),預(yù)測代碼如下:

import torch
import cv2
import torch.nn.functional as F
from vgg2 import vgg ##重要,雖然顯示灰色(即在次代碼中沒用到),但若沒有引入這個模型代碼,加載模型時會找不到模型
from torch.autograd import Variable
from torchvision import datasets, transforms
import numpy as np
 
classes = ('plane', 'car', 'bird', 'cat',
   'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
if __name__ == '__main__':
 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 model = torch.load('vgg_model.pth') # 加載模型
 model = model.to(device)
 model.eval() # 把模型轉(zhuǎn)為test模式
 
 img = cv2.imread("horse.jpg") # 讀取要預(yù)測的圖片
 trans = transforms.Compose(
  [
   transforms.ToTensor(),
   transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
  ])
 
 img = trans(img)
 img = img.to(device)
 img = img.unsqueeze(0) # 圖片擴(kuò)展多一維,因為輸入到保存的模型中是4維的[batch_size,通道,長,寬],而普通圖片只有三維,[通道,長,寬]
 # 擴(kuò)展后,為[1,1,28,28]
 output = model(img)
 prob = F.softmax(output,dim=1) #prob是10個分類的概率
 print(prob)
 value, predicted = torch.max(output.data, 1)
 print(predicted.item())
 print(value)
 pred_class = classes[predicted.item()]
 print(pred_class)
 
 # prob = F.softmax(output, dim=1)
 # prob = Variable(prob)
 # prob = prob.cpu().numpy() # 用GPU的數(shù)據(jù)訓(xùn)練的模型保存的參數(shù)都是gpu形式的,要顯示則先要轉(zhuǎn)回cpu,再轉(zhuǎn)回numpy模式
 # print(prob) # prob是10個分類的概率
 # pred = np.argmax(prob) # 選出概率最大的一個
 # # print(pred)
 # # print(pred.item())
 # pred_class = classes[pred]
 # print(pred_class)

縮成32x32的圖片:

運(yùn)行結(jié)果:

以上這篇pytorch VGG11識別cifar10數(shù)據(jù)集(訓(xùn)練+預(yù)測單張輸入圖片操作)就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。

相關(guān)文章

  • python3.4 將16進(jìn)制轉(zhuǎn)成字符串的實例

    python3.4 將16進(jìn)制轉(zhuǎn)成字符串的實例

    今天小編就為大家分享一篇python3.4 將16進(jìn)制轉(zhuǎn)成字符串的實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2019-06-06
  • python 中 .py文件 轉(zhuǎn) .pyd文件的操作

    python 中 .py文件 轉(zhuǎn) .pyd文件的操作

    這篇文章主要介紹了python 中 .py文件 轉(zhuǎn) .pyd文件的操作,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2021-03-03
  • 一文教會你用Python讀取PDF文件

    一文教會你用Python讀取PDF文件

    Python?工程師在日常的工作中,經(jīng)常會碰到解析和處理PDF文件的情況。本文將pdfplumber進(jìn)行PDF文件的讀取操作,感興趣的可以了解一下
    2022-08-08
  • python nmap實現(xiàn)端口掃描器教程

    python nmap實現(xiàn)端口掃描器教程

    這篇文章主要為大家詳細(xì)介紹了python nmap實現(xiàn)端口掃描器教程,文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2019-08-08
  • django_orm查詢性能優(yōu)化方法

    django_orm查詢性能優(yōu)化方法

    這篇文章主要介紹了django_orm查詢性能優(yōu)化方法,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧
    2018-08-08
  • python和go語言的區(qū)別是什么

    python和go語言的區(qū)別是什么

    在本篇文章中小編給大家整理的是一篇關(guān)于go語言和python的區(qū)別點(diǎn),需要的朋友們可以學(xué)習(xí)下。
    2020-07-07
  • pandas讀取excel,txt,csv,pkl文件等命令的操作

    pandas讀取excel,txt,csv,pkl文件等命令的操作

    這篇文章主要介紹了pandas讀取excel,txt,csv,pkl文件等命令的操作,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2021-03-03
  • 選擇python進(jìn)行數(shù)據(jù)分析的理由和優(yōu)勢

    選擇python進(jìn)行數(shù)據(jù)分析的理由和優(yōu)勢

    在本篇文章中小編給大家整理了關(guān)于選擇python進(jìn)行數(shù)據(jù)分析的理由和優(yōu)勢,對此有需要的朋友們可以跟著學(xué)習(xí)參考下。
    2019-06-06
  • 淺談python新手中常見的疑惑及解答

    淺談python新手中常見的疑惑及解答

    下面小編就為大家?guī)硪黄獪\談python新手中常見的疑惑及解答。小編覺得挺不錯的,現(xiàn)在就分享給大家,也給大家做個參考。一起跟隨小編過來看看吧
    2016-06-06
  • 深入探討Python復(fù)合型數(shù)據(jù)的常見陷阱與避免方法

    深入探討Python復(fù)合型數(shù)據(jù)的常見陷阱與避免方法

    在Python中,復(fù)合型數(shù)據(jù)(例如列表、元組、集合和字典)是非常常用的數(shù)據(jù)類型,本文將深入探討Python復(fù)合型數(shù)據(jù)的常見陷阱,并提供一些避免這些問題的實用建議和技巧,希望對大家有所幫助
    2024-03-03

最新評論